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We formally derive two nonlinear Ginzburg-Landau type models starting from the Wigner-Fokker-Planck
system, which rules the evolution of a quantum electron gas interacting with a heat bath in thermodynamic
equilibrium. These models mainly consist of a quantum, dissipadi{&®) hydrodynamioD(%4) stochastic
correction to the frictiona{Caldeira-LeggetiSchralinger equation. The main ingredient lies in the use of the
hydrodynamic/stochastic fluid model approach associated with the quantum Fokker-Planck equation and the
identification of the associated pressure field. Then, Madelung transformations set the problem in the Schro
dinger picture of dissipative quantum mechanics. We also describe the stationary dynamics associated with
both systems.
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I. INTRODUCTION AND SETTING OF THE PROBLEM 2 2
nQh nh

Dpp=7keT,  Dpe=75 kT’ Dgq= 12m%Kks T

)
The mathematical modeling and analysis of quantum dis-
sipation phenomena have experienced a great impulse in past
years. The inclusion of dissipation within quantum mechan-are phenomenological constants related to the interactions,

ics is mainly based on a system-plus-reservoir formulation,
which means that energy is lost by the system and absorbed Y
by the environmen(for instance, a semiconductor device in A= 2m )

which doped regions are considered as electron reservoirs

injecting electrons into the active regionghen, the physi- s the friction coefficientm s the effective mass of the elec-
open quantum systems, i.e., a particle ensemble interactinge cyt-off frequency of the reservoir oscillatoks, is the

lators. The effect of the thermal bath on the motion of the

particles is typically described by two parameters: the bath i
temperature and the friction constant. In this direction, the  (@,[V]W)(x,&,1)= —J [V(X4,t)=V(x_,1)]
qualitative study of different approaches to the quantum 2mh )2

Fokker-Planck master equation in the Wigner representation
(or Kramers equatignhas been the subject of several recent

works, e.g., Refs[1-11]. In this paper we assume that the . . . . . :
interaction of an infinite in extent 1[for notational conve- 'S @ pseudo-differential operator associated with the given

nience quantum gas of spinless fermions with a thermal bathOte.nt'aIV: Th_|s operator can make the gquatlon to become
(subject to moderate/high temperaturs described by the nonlinear in virtue of the chosen potential. Hehedenc_)tes
following Wigner-Fokker-Planck equation with nonvanish- the _r_educeo! Planck constant and andx_ are the shifted
ing friction mechanisnisee Ref[4] for a systematic deriva- POSition variables

XW(x,&',t)e € Ede'dy  (5)

tion)
N f h ©
Xy =X+ ==Y, X_=X—z—Y.
Wyt €W, @, [VIW=Lopp[ W] (1) =X omY 2m
with This or similar simplified models are at the basis of quantum

kinetics of open systems, microelectronics and nanosolid
D > physics. In fact, they are being currently explored in various
LQFP[W]:_F’ZPW§§+ 2N (EW) i+ —D W+ D gq Wi, fields of scientific interest mainly stemming from mesos-
m m copic mechanics, such as quantum Brownian motion, quan-
(20 tum optics, semiconductor device applications, quantum
measurement theory, decoherence and emergent classicality,
where W=W(x,&,t) is the (quasjprobability distribution beam propagation in accelerators or activated chemical pro-
function,x and ¢ hold for the coordinates of the electron gas cesses, among others.
and of the bath, respectively, When Dy, and Dy, are set to zero, the well-known
Caldeira-Leggett master equatih?] is obtained. It is re-
markable the fact that the Wigner-Fokker-Planck equation
*Email address: jllopez@ugr.es (1) and(2) is charge-preserving, i.e.,
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i
q=fRn(x,t)dx E__%(Hx_Hy)P_)\(X_y)'(Vx_Vy)p

is an invariant of motion, where +| Dggl Vi + V|2~ %|x—y|2
qql Yx vy 52

n(x,t) = JRW(x,é,t)dé @ + 2D (V%) | p.

stands for the electron position density. However, the diffu{ere, p=p(x,y,t) e L(R, ¥ R,) is the density matrix func-
sive character of the system preveitaind £2 to be colli-  tion and
sional invariants. Indeed, defining the current and the elec-

tron kinetic energy densities by 2

h
H=— %Axﬁ‘V(X,t)

J(x,t)= f EW(X,&,1)d¢, (8) s the electron HamiltoniarH, andH, standing for copies of
i H acting on thex andy variables, respectively. Accordingly,
the problem is physically meaningful and mathematically
1, consistentsee[1,2] for details.
Ex0)= QJHf W(x,¢,1)dé, © Associated with the quantum Fokker-Planck systéir-
(6) there is the following macroscopic fluid model:

respectively, one easily finds N+ (NU)x=DgqNyx, (12)
2 Ny 1 1 5
ngLQFP[W]dgz_ZAJ_Equnx'I'quJXXa (10 Ug+ U_ZquF UXZ_EVX_E(ZE_nU )x—2\U
2 Ny
— mquF‘FquUXX, (13)

(., Dpp 2
EﬁRf LQFP[W]dg_Fn_4)\E_Equ‘]X+ quExx- - . - .
(11) which yields the propagation laws for the densii,t) [cf.
Eq. (7)] and the fluid mean velocity

Thus, the momentum-and-energy conservation kinetic iden- J(x,t)

tities do not hold in the frictional/diffusive case. u(x,t)= XD (14)
Another interesting aspect is that the Wigner-Fokker- '

Planck equatior{1) and(2) is written in so-called Lindblad  ang incorporates quantum dissipation within the context of

form (see Ref[13], Sec. 2 of Ref[1]) provided that the Fokker-Planck scattering. This model is to be compared to

following constraint the hydrodynamic formulation of pure state de Broglie—

Bohm quantum mechani¢45,16], consisting of the follow-
DppDgo= Dsq— 1h2\2 ing current continuity equation and momentum equasee

also Refs[17-19 for recent analysjs

is satisfied by the diffusion coefficients. Equivalently, in N+ (NU),=0

terms of the original thermal bath constants this condition ! o

reads 1

U+ U= — —(V+Q)y,
7 Q<\3mksT

whereQ is the quantum potential of Bohm defined by

for nontrivial situations ¢+ 0). Both relations can be found 2

in [5,14]. Then, the associated density matrix operatr Q:_ﬁ_ (V) xx (15)
linear, nonnegative, self-adjoint trace class opejator 2m o -
R(t):L2(R)—L?(R), defined by

Notice that the balance equati@t®) for n(x,t) is allowed to
depend not only on the gas density, as occurs in the usual

(R(t)f)(x)=J f(y)p(x,y,t)dy, kinetic theory of gases and liquids, but also on its gradient.
Ry In fact, density-gradient theories have already proved to have
a significant range of physical applicability. The drift-
preserves positivity under temporal evolution: diffusion systen(12) and(13) has been recently dealt with in
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[6,7], where existence of classical solutions to the stationaryvith the quantum Fokker-Planck system in terms of the cur-

problem as well as exponential convergence of the solutiongent velocity and the classical and quantum parts of the pres-

towards the thermal equilibrium state in the long time weresure field[cf. Eq. (31) below]. Then, we use the polar form

shown. of the wave function to transform the fluid equations into a
Far from the standard arguments connecting botiBohm-Madelung-type Schdinger equation which includes

quantum-mechanical Wigner and Sctiireger pictures, based dissipative and hydrodynamic terms.

on density matrix approaches, the hydrodynamic equations

(12) and(13) become now the key tool in our derivatiofis A. The fluid model

the spirit of Refs[20-22), as we shall see later on. Actually ) .

we show that, for a large class of quantum mixed states, thE Following the standard-moments picture methofcf.

Wigner-Fokker-Planck system can be reduced to an exac gs. (_7)_(11)]’ one gets _from the Wigner-Fokker-_PIanck
effective nonlinear Ginzburg-Landau-type equation Whichequatlon(l)—(Z) the following quantum hydrodynamic sys-

accommodates quantum dissipation via the introduction ofem of irrotational flow equations

<j_|ﬁu§|on currents. In the hyc.irodyn'a.mlc apprqach, .thIS equa- N+ (NU),= D g (16)
tion is even shown to contain additional nonlinearities com-

ing out from an adequate identification of the pressure field. 1 2

The connection between open quantum systems and Ji+2Ex+ —nV,= =2 NJ— —Dpqny+ Dggdux-  (17)
Ginzburg-Landau theories has been already discussed in dif- m m

ferent physmal contexts, e.g., trapped modes of co_Id, d.'IUteEquation(16) is easily recognized as a Fokker-Planck equa-
Weakly'lnter.actlng Bose gasd&3], evapora’ge cooling in tion. By using Eqs(14) and (16), the current equatiofl7)
Bose-Einstein condensat¢24], or cosmological quantum oy pe recast in terms of the fluid mean velocity as
kinetic theory[25].

The paper is structured as follows: In Sec. Il we give a 1 2 Ny
hydrodynamic approach to quantum dissipation in the Schro Ui+ ut=— V= —(Py),= 2 u= —Dpq = +F(n,u),
dinger framework. To this aim, we first introduce the quan- (18)
tum fluid model associated with the one-dimensioidD)
Wigner-Fokker-Planck system ig-moments picture. Then, where we have identified the scalar pressure field as
we proceed to the identification of the classical and quantum
fluid dynamical pressures. Also, we justify the presence of Pu(x,t)=2E(x,t) = n(x,t)u(x,t)? (19
the quantum Bohm potential in the fluid equations as well as _ ) _
that of an additional effective pressure potential. Finally, the2S can be simply checked after comparison with(&8) (see
(formal) nonperturbative derivation of an effective, dissipa- Ref.[28] for a general setting Here,D o4 plays the role of a
tive nonlinear Ginzburg-Landau-type equation for the quankinematic viscosity and along with,, measures in some
tum gas is carried out. Section Il is devoted to investigate £ense the strength of gradient effects in the gas-reservoir sys-
different (stochastig approach leading to a nonlinear, dissi- tem. On the other hand, the cross diffusidhy( term) gives
pative Sch'fdinger_type equation_ To the best of our knowl- rise to SO'Ca”ed Dl’ude CO_I’reCtlon, Wh|Ch take§ into aCC(-)Unt
edge, both the hydrodynamic and stochastic Ginzburgtemperature effects. This term vanishes in the high-
Landau type models derived in this paper have not been dedmperature limikgT>7%(. Finally, F(n,u) represents the
with before in the literature. In Sec. IV we make a detaileddissipative force given by
analysis of the existence of stationary solutions to the non- N
linear Glnzburg-Landa_u-type equatlons_derlved_lr_l Sec. I_I and F(n,u)= qu( 2—Xux+ uxx) ] (20)
[ll. Also, for some particular cases we find explicit solutions

and describe their main dynamical properties. Finally, some . . .
technical remarks on the 3D derivations are collected in th&nder this hydrodynamic approach the quantum fluid can be
Appendix. seen as the medium in which the particles are transported.

Actually, the electron ensemble assumes the form of a highly
localized inhomogeneity moving with the local fluid mean
Il. THE HYDRODYNAMIC APPROACH velocity.

. . . . Define the current velocit
In this section we are concerned with a hydrodynamic Y

(quantum fluid approach to the Wigner-Fokker-Planck sys- Ny

tem. Actually, we derive a nonlinear Ginzburg-Landau-type v:=U=Dgq (21)
equation[see Eq.(46) below] which accounts for quantum

friction and diffusion effects. Besides the well-known 10ga- Then, Eq/(16) becomes the usual continuity equation of fluid
rithmic nonlinearity first studied by Byalinicki-Birula and mechanicgmass conservation law

Mycielski in Ref.[26] and the nonlinear, frictional termS

proposed by Kostin ifi27], whereS stands for the phase of ny+(Nv),=0. (22
the wave function, our equation retainsc¥#°3) nonlinear

complex potential describing quantum position diffusion. ToAlso, v(x,t) satisfies the following partial differential equa-
proceed, we first recompute the fluid equations associateiibn
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2 Ny
Vit vv=— EDPC‘F+G(n'0)'

(23

1 1
va_ E(PU)X—Z)\U—

where the position-diffusion kern&(n,v) is now given by

Ny Nyx Ny 2
= +220F — v =\ —|+
G(n,v)=2Dgq Uxx 2n vkt v A n} D

Note that we have used Eqd.8), (21), and(22).

B. Hydrodynamic to quantum transition: A quantum potential
and diffusion representation

PHYSICAL REVIEW EG69, 026110(2004

4h _ _
— —Dgql 2 MM )] 2 MRE (0]
m k=1

k=1

o 2
+4D3, X MR (i |-
k=1

By writing the quantum states in polar form
(X, 1) =Ag(x, 1) e 2SS,

whereA,(x,t) andS,(x,t) hold for the amplitudémodulus
and the phas@argumeni of ¢ (x,t), respectively, and where

Now we are concerned with the derivation of an extended

Bohm'’s causal approach to the viscous quantum hydrod
namic system introduced above. To proceed, we first observe

that the moment systelii6)—(20) [alternatively Eqs(22)—

(24)] is not closed, as the expression for the pressure iNyyhere

volves the second order momem§§2W(x,§,t)d§. Then,
some “admissible” closure relations are required.

Denote Ref) and Im(p) the real and imaginary parts of

the complex functionp, respectively. We also denote the
complex conjugate ofp. Following the ideas in Ref.21],

we now suppose thatV(x,&,t) is the Wigner distribution
associated with a quantum mixture ¢@€ompley states

Yn(x,1), that is,

1 -\ .
W(x,&,t)= > k;l )\kfpzpk(x_ DX, He Yedy

with the notation introduced in Eq6), where thex,’s are
the occupation probabilities

NS0, O A =1.
k=1

Also, we consider the local diffusion currepfx,t) to be
defined by

jr=nv=J—Dgyqnx

Mlld Py, (25

. _
== gl NdM(Yac(¥10x) ~Dog 2y

so as to fit Fick’s law. Then, the pressure fi¢k®) can be
rewritten in terms of the quantum stat#g (omitting the ,
t) dependence for the sake of simpligigs

2

Pv:f §2Wd§_ o
R

i

n
hZ _

- k; MERE P 10 o = | (#1040

2

h _
—2[ k§>:l MM (Yo« ]

m =

1 2

> Mwd?

k=1

a=2mDy,, (26)
ywe can split
P,=PS+PY,
2
52 [E )\kAi(Sk)x}
c 2 2 k=1
Pi=——51 2, MAKSI-
e - > MNAL
k=1
is the classical part of the pressure and
ﬁZ
q—__ 2_
Pl= 2 ML A A0
2 MAR(SOx|| 2 MAA
2h | k=1 k=1
m2
> MAL
k=1
2
[E )\kAk(Ak)x}
2 k=1
—4Dg, (27)
> MAZ
k=1

is the quantum correction of ordet* [recall that Dq
=0(#?)] to the classical pressursee Refs[17,29 for a
physical justification in a nondissipative context

Some observations are now in order:

(i) In the absence of dissipation in tixedirection Dgq
=0), the difference between the classical zero-temperature
Euler equations and the hydrodynamic equatitt&—(20)
[or Egs.(22)—(24)] mainly lies in the quantum contribution

ﬁZ
o2 k;l ML A 2= A(A) ]

of order#? appearing in the velocity equation, which plays a
central role in the quantum potential approach.

(i) The classical pressure; obviously vanishes in the
purely quantur(single-statg case.
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(iii ) In standard dissipative quantum mechanics, the diffu- 22
sion coefficient in the Fokker-Planck equatitir) reads szﬁ[(\/ﬁ)i— In(Vn)yd
m
> 2 + 2 R (o)~ 4D V)
2m’ m x\U aqqt VIx
v _ #% [n h n2
which yields the usual value=7%. We are, however, con- __ _n(_x + —ny(v)— D2 X (30)
cerned with a generalized, nonstandard quantum se@ifig Aam2 \'n m 49n -

(see Ref.[30] for detaily involving D4 as the diffusion g

coefficient of the process.
Now we consider the average velocities associated witlin the PS-PY representation, the current velocity equation

the wave functions), , defined by (23) now reads
! (S 1 1 1
Uk=— .
m" X vt ovg= = =V =(Px——=(P)x—2\v
It is a simple matter to corroborate thaf can be rewritten X
in terms of the velocity variance as - aquF“LG(n-v)
h =~ —V,— (P~ ~(PY)
cC___ 2\ _ 2 X v/X v/ X
Pv_az n(<v > <U> ) m n n

where the valueév ?) represent the statistical averages given
by

nXXX
) T) BY
(©)=1 2 Mol
=1
after straightforward calculations, where we have used the
In this way, we recover the standard expression for the clas}c-irSt identity in Eq.(25).
Y P Now, taking into account Eq$30) and(31), the physical

sical pressure functiogsee Ref[28]). Also, Eq.(27) now assumption$29a and(29h) and the following identities in-

reads volving the average velocityv):
Pq—thx AYZ—A(A +2h2)\AA 2
v o 4 kL (A% = Ak(Ar) ] m | 2 M k(A l(pQ) _ 52 o ny . gl 712 [Ny
5 n v/X 4m2 qq 2 XX n 4m2 n
[kzl )\kAk(Ak)x} hl
X(v)—4Dg, : (29) ()
MA
gl KAk
In order to close the moment system we need some con- = ;”<U>_ Dganx.

tinuity equations relating the classical and quantum pressures
to the particle density. To this aim, we first make the standard

assumption that the classical pressure only depends on the h n n
position density and then consider that the amplitudes are all vt=—<v>t+—qu[(—x<v>) +(v)xx} - Déq(—xx> ,
equal, i.e., a a n . n/,

P;=Pg(n), (299

h? h Ny , Ny[ Ny
UUx:?<v><v>x_Equ F(l)) +quF Tl
X X

A x,t)y=A(x,t)=+n(x,t) Vkel, (29b
so that Eq(28) becomes we are led to
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h a and considering the velocity field of the fluid flow generated
(V)=— ;<U><U>x— ﬁ(V+mU°)x—2?\<v> by the wave functior(35) to be given by the standard rela-
tion
® 12D, Jdn(ny+| 1 mt e Q] 1
m#h Pq hZ qaq . <U>: ES( ) (36)
nX
+Dgq 2F<v>x+<v>xx The hydrodynamic to quantum approach stemming from

Egs. (35 and (36) is based on the well-known Madelung

a ., [ng/ny Nyx transformationg32]. Indeed, the connection between quan-
quq F(F - (7) . (32)  tum mechanics and classical hydrodynamics was already ob-
x x served in 1927 by O. Madelung, in the context of the semi-
Here classical approach to nonlinear Scatlirger equationgsee
' Ref. [19] for a recent review Since then, Madelung-type
12 [ (yn) w2 2 trar]gformations have been succe_edingly psed in various sci-
Q=—— XN | o XXX (33 entific fields, e.g., galaxy clustering studiesee Sec. 4 of
2m| |n 8m| n p2 Ref. [33]) or multistream plasma dynami¢20]. Choosing

nonvanishingn(x,t) and nonsingularS(x,t) makes the
is the(enthalpy relatednonlocal quantum potential of Bohm Madelung transformations meaningful and prevents the asso-
[cf. Eq. (15)] which represents current arising as a result ofciated hydrodynamic equatiofsf. Egs. (38) and (39) be-
density gradient effects. Also, low] to become singular. Besides, in RE34]| T. Wallstrom
observed that the single-valuedness quantization rule

n (P%),,
Uc(x,t)zf il (34) "
o n r= 5ﬂlj(x,t)o|a(x):2kwE (37)
Y

is an additional effective potential stemming from the statis-

tical mixture of quantum states. Thus, to the lowest order thgs needed in order to establish the formal equivalence be-
quantum open system behaves as an ideal gradiensgas tween Madelung and Schimger equations, whelee 7 and
Ref. [29] for detail9 subject to frictional and dissipative in- y is any closed loogin our case, the circulatiof is re-

teractions. _ _quired to be an integer multiple of g2x)/m). This situation

It is well known that quantum potentials play a crucial js pointed out to arise only in two or more space dimensions,
role_ln the hydroqunamlc description of quantum theory of\yhen removal of the nodal séW =0} of vortex configura-
motion (see, for instance, Ref§18,31). In particular, the  {jons does disconnect the topology. The quantization condi-
Bohm potential(33) is basically a field through which the 4, (37) might also be necessary for Madelung-Sctinger

electrons interact with themselves, so thgt can be inter-  gqyivalence to hold in 1D whether the topology of the cor-
preted as a quantum diffusion term yielding a theory Wh'Chresponding space is nontrivial.

contains both quantum-mechanical confinement effects and |, the sequel we shall assume for simplicity adequate
tunneling. Bohm's potential has been used, for example, t§oyndary conditions on the density, the phase, and the total
study wave packet tunneling through barriers. Then, in theyrrent in order to avoid boundary contributions at infinity

picture of the balance of mass and balance of momenturgiong the derivation. In terms of the amplitude and the phase

equations(22) and (32), the overall motion of the system ¢ ¥, the quantum fluid system consisting of E4&2) and
under study can be thought of as the motion of a quantur@gz) reads

fluid having densityn(x,t) and velocityv(x,t), under the
influence of the potentia¥(x,t) augmented by the quantum A
Bohm potentialQ(x,t), the effective potentiaU®(x,t) and N+ ——(NS)x—Dggnxx=0, (38
some viscosity and dissipation forces. The effects due to the Ma
appearance of these nonstandargl, and D terms yield
significant deviations from what is expected in the purely

h @
2_ _
classical case, as we shall see later on. S+ Zmasx_ % (V+mU®)—2)S

2
C. Derivation of an effective time-dependent Ginzburg- @ _ 4m 2
Landau-type equation h 2Dpgln(n)+| 1 52 Daa| Q
This section is devoted to the search for a Sdhvger «
. ; . n
representation of the quantum hydrodynamic system derived +Dgql 2 f —XSxde+ S
in Sec. Il B. This is done by defining the following effective — N
wave function(in modulus-argument representation 5
y M Hop (39
W (x,t)=Jn(x,t)el/aSxn (35) 2f ddp| T )

026110-6
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which is a dispersive regularization of the quantum Euler J %
system including quantum friction and dissipation correc- ﬁ:m_asx,
tions. Combining now Eq$38) and(39), using the identities
(35 and(25) and taking into account the following expres- . n.im
sions for the derivatives of the phase \P\IIX=§X+ =3 (43)
szzl_a l(nz— 2V, (40) Equation (42) does incorporate quantum corrections of
2n order#? and7? to the nonlinear, frictionalKostin-Caldeira-
LeggettySchralinger equation
fa| Ny —( Wy |\Px|2
R I
X x iAW=— ﬁ\lfxﬁ— V+mU°+ nJ ﬁdx V. (44

wherez can be replaced by or t indistinctively, one gets )
after simple but lengthy algebra the following exact, nonlin-Indeed, Eq(42) can be rewritten as

ear time-dependent Ginzburg-Landau-type equation 2 ‘3 .
' B . n, iAW,=— ﬁ‘lfxﬁ V+mU°+ nf_ocﬁdx+/\hz W+ Ays,
Ihqft= —ﬁ'Flﬁqu \Pxx_lthqufx -

where theO(#2) term[cf. Eq. (3)] is given by
x J
+| V+mU®+2DqIn(n) + Uf_mﬁdx>‘l’ Aj2=2DpIn(n)
x nol] and wherdcf. Eq. (25)]
—2meqJ —X(—) dx|w
—oN N x Ny (J
X Aﬁ3=—2meq[f —(— dx|¥
. 2 —x N\ N
if 1 , X x
+ 7quﬁ 2|q,x| +F v, (42

2n

. n)( 1 2 n)2(
+ihDgql Vx— F\Ifﬁ—— 2| v, + N4

This equation extends that earliest derived in R88] by
Doebner and Goldin from the Simplest form of Continuity enters into the equation as a Comp|ex potentia| of Of‘d;er
equation of Fokker-Planck type and looks into the nature ofrhjs is in good agreement with the physical interpretation of
open quantum systems and quantum fluid transitions. In oWomplex potentials, as they have been used in the literature
context(that is, when the diffusion constant is assumed to bgo simulate dissipative processes and decoherence effects in
qu).! the Doebner-Goldin nonlinear modification to the the transition regions of small qguantum devices.

Schradinger equation is given by Reciprocally, the quantum hydrodynamic mod&8$) and

(39) is recovered via the Madelung transformati@®b) by
simply taking real and imaginary parts in both sides of Eq.
(42). We note that Eq42) is easily checked to be still charge
preserving, that is

which constitutes a reduced model for irreversible and dissi-

pative quantum systems. The presence of a logarithmic non- i( J' W (x t)|2dx) -0

linearity in Eq.(42) is justified because we assumed a con- dtl Jr ' '

stant temperaturel 8]. Otherwise, the Wigner-Fokker-Planck

system would not be quantum-mechanically coreee Ref. by just multiplying the equation time®, integrating against
[1]) in contrast to the classical situation. Furthermoren)n(  x and taking imaginary parts. Also, following the standard

can be seen as an approximation\oup to O(%%) terms  averaging techniques we obtain the following energy func-
whenV is assumed to be the Hartree electrostatic potentiaional

solving the Poisson equatidn,,=n [17]. Some meaningful
physical interpretations have been given to the appearance of h? 2 .
the potential Inf) in the Schfdinger equation. Indeed, itcan ~ EL¥ (D= %qu"' dx+ Ln(vﬂLmU )dx
be understood as the effect of statistical uncertainty or as the

potential energy associated with the information encoded in xJ

the matter distribution described by the probability density T ”fH” f de
n(x,t) (see[36] and references therein for a wide discus-

2

%
iﬁ\lftz(—ﬁﬂthq)\lfxer

M
VHitiDgq— |V,

—oo

dx

dx+ 2quanIn(n)dx
sion). J x Ny (Jd
In deriving Eq.(42) we have used the relatiorid) and _meqﬁH” n +2f_m_ o] dx
(26), as well as the following identities involving the current X X
density (49
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associated with the solutions of E@2), which of course is  US(x,t) which is proportional td¥|*3 (see the Appendix
not a preserved quantity for the Fermi syst@®e Refs[1,2]  This potential comes out from a{® approximation of the
for details at the Wigner levgl Hartree-Fock exchange-correlation potentiBhomas-Fermi

It is significant that theD, term in Eq. (1) does not approachwhen the charge density variation is not too rapid,
contribute to the final form of Eq42). This is due to the fact and is commonly used in practical numerical calculations.
that the moment system is truncated at the level of the cur-

rent equation, while th®,, contrib_utio_n is only “visible” at IIl. THE STOCHASTIC APPROACH
the next level, i.e., that of the kinetic energy equatjoh
Egs.(10)—(11)]. Indeed, if\, Dpq, andDgq are set to zero This section is devoted to the derivation of a Ginzburg-

(this is the case analyzed in R¢L]), Eq. (42) becomes the Landau-type model from the Wigner-Fokker-Planck equa-
usual Schrdinger equation with an additionéixed-statg  tion, still accounting for quantum friction and dissipation ef-
effective potentialUS(x,t) (as in Ref.[21]). Also, the fects. The resulting Ginzburg-Landau type equaficin Eq.

Caldeira-Leggett modelO(,;=Dy,=0, see Ref[12]) re- (58) below] incorporates a logarithmic nonlinearity to a par-

duces to Eq(44) in this approximation. ticular nonlinear Schidinger equation of the Doebner-
Last but not least, Eq42) can be rewritten in the tradi- Goldin clasg35]. The way to proceed now lies on a different
tional form of the Schrdinger equation as perspective. Actually, we shall use stochastic techniques
_ based on consideration of forward and backward velocities
= 12 ¥ ih Nyx W associated with quantum Brownian motion and time reversal
== 5 Wt 5 Dadl 7y invariance. Although seemingly simpler than Eg6), the
3 Eq. (58) retains terms up to ordeéd(#%).
X We now assume that the Wigner-Fokker-Planck equation
C -
| VAEMUS2Dqlin(n) + nf,xn dx)w (1) and(2) [or more precisely the moment system consisting
of Egs. (16) and (18)—(20)] is associated with a stochastic
X Ny (Jd J process. Indeed, assuming Brownian motion of the electron
_meq[zfmF(ﬁ) dx+<ﬁ) v (46) ensemble(for instance, produced by the interaction of the
) X electrons with a ionic lattioe the electrons follow the paths
by observing that of the stochastic Langevin equatiNewton’s law
n 1 n2 mx’—V,= F(t). 4
Vo~ qufXJrﬁ 2| 2+ Fx)qf =) 4

Here, the effect of the coupling between the system and the
thermal bath is modeled by the stochastic force

Ny IiM 1( ny
-

2n T A R

v,

F(t)=I'(1)—2Ax'(1),

which is a simple consequence of the identd). Besides
the logarithmic nonlinearity, under the “classical” Schro which consists of a meafiriction) force proportional to the
dinger formulation(46), it is more clearly identifiable than in velocity plus a fluctuating ternt’(t), I'(t) being a white
Eq. (42) the presence of a friction term due to the velocity noise random force with independent, identically Gaussian
densityJ/n and a diffusion term due to the diffusive velocity distributed processes ¢fonstank variance Am?26, with 6
densityD y4(ny/N). =(kgT)/m. Applying now Ito’s equation for the probability

In the especial case of a zero-temperature 1D electron gadensity associated with the solutions of E47) yields the
the classical pressure is known to be given(®se, e.g., Ref. well-known Vlasov-Fokker-Planck equation

[21])

1
my2 fi+ &f — avxf§=2)\(§f+0f§)§ (48
PS(n)=——n?,
0 (see, for example, the introduction of REB8], where this

wherev=(7h/2m)n, is the Fermi velocity anah, stands derivation was sketched for a quantum Fokker-Planck relax-
for the equilibrium reference density. Accordingly, the effec-ation model. The quantum-mechanical analog of E4@) is

tive potentialU® [cf. Eq. (34)] becomes our Wigner-Fokker-Planck equatidfh) and(2) (see Ref[1]
. - for detailg. Actually, in the classical limith—0 we have
n (P ’ 7h
UC(x,t)zf (P*)n dn — . Dgq— 0D pq—0 and formally
0 n’ 8m
. i S Dpp
The resulting configuration is simildsee Ref[37]) to that LorpW— FW&# 2N(EW),,

standing for a 1D mean-field Boson gas in the dilute limit
and strong coupling condition. Another interesting example
arises in the 3D case, where the multidimensional analog of O[VIW— — iv W
Eqg. (42) now incorporates an additional effective potential m X ¢
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such that the classical Vlasov-Fokker-Planck equad@is  Since the internal stress tend®y is a dynamic character-

recovered. istic of motion, its divergence changes sign under time inver-

In this picture, Eq(16) admits a classical interpretation in gjon. Accordingly, after time inversion E¢51) becomes
terms of Nelsonian stochastic mechar]igg] (see also Refs.

[40-42 and references therginThis theory, initiated in 1 1 2 n

1952 by Feies [43], is intended to give a description of D.u_=——V,+—(P, )x+2)\u,——qu—X, (52)

quantum mechanics in terms of classical probability densities m n- - m n

for particles undergoing Brownian motion with diffusive in-

teractions. In this framework, E. Nelson showed in R8¢]  with

that the evolution of a particle subject to nondissipative

Brownian motion is equivaleriin the sense of its probability (Du_)(X,1)5=(U_) 1+ U (U_)+ Dgg(Uo) gy

and current densijyto that described by the Scliinger

equation(see also Ref§42,44). Fruitful applications of this

stochastic picture are in order nowadays, see, for instanc

Refs.[22,30 where the nonlinear dynamics of particles in

accelerators has been studied in the framework of a

stochastic-hydrodynamic model for the collective motion of

a particle beam. We shall make here some extensions aiming

at the frictional, dissipative case. (53
Under the Brownian motion assumption, the particles are

subject to the action of forward and backward velocity fieldsor equivalently the following expression for the pressure

u, andu_=u,—2u,, respectively, which enter into the field

density equatior{16) as

A similar procedure can be followed in R¢22]. Subtracting
Bq. (52) from Eq. (51) yields

1
(Ug)tFv(Ug)x=vyUo+ quvxx_ 2 v — E(Pqu)X!

X
nt+(nut)x:iqunxx- (49 Pu+=2qunvx—2)\f jdx, (54)
Here,u, denotes the so-called osmotic velocity defined by
wherej=nv and we used E¢50).
Ny We then sum up Eq$51) and(52). We obtain the follow-
— (500 . - . ) X N
49 n ing frictional version of Nelson’s stochastic generalization of
Newton’s law
according to Fick’s law, which sets the exact balance be-

Ug:=D

tween the osmotic currentu, and the diffusion current 1 n,
D4qnx and somehow controls the degree of stochasticity of vitovve=— EVX—Z()\quJrﬁ r
the process by informing us about how much nondifferen-
tiable the random trajectories of the particles are. Now, sum- , [y [y Nyy
ming up both forward and backward Fokker-Planck equa- —Dgq F(F) - T) : (59
tions in Eq.(49) and introducing the current velocity x X
u,+u_ Ny Invoking the statistical velocity averages introduced in Sec-
vi=—— = Uy —Uo=Us —Dgqpr tion Il B, we get from Eq(55) the following transport equa-
tion for the momentum density
we recover the continuity equatiom+ (nv),=0. On the
other hand, by defining the mean backward derivative of the h a 2a Dpq) Ny
forward velocity as (V) t ;<U><U>x_ B RN ey e
(D_u+)(x,t)::(u+)t+u_(u+)x—qu(u+)xx, a o | Ny [Ny Nyx
#Pan ) T\ ] |7 Palvie
Eq. (18) can be rewritter{for u,) as x X
dma
1,1 25 M ~—5 DaQx. (56)
D,U+:—EVX—H(Pu+)x—2)\u+—EquF. (51) #3 qarx

We now perform time inversion in E¢51) according to the  « still standing for Eq.(26). The Schrdinger-like equation
following transformations for the time variable, the back-associated with Eq:56) comes out by using the Madelung
ward and forward velocities and the mean backward and forwave function(35). Indeed, identifying the average momen-

ward derivativeg40]: tum (v) with a multiple of the phase gradieftf. Eq. (36)]
and taking into account the relatiof0) and (41), we find
t——t, z—-z, U——Uz, D.——-D:. the following Ginzburg-Landau-type equation
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. h? . n . h?
|h\Pt=( — %—meq)\I’XXﬂﬁquﬁxWX iAW, =— m‘[’xer(V*‘ mUC)\If+(2qu+ 7D g IN(N) ¥
8m? ifu 2 Nyx
+| V- 1—?ng Q| ¥+ (2D g+ 7Dgq) + 7qu—meq)7‘1’- (60)
am W, |2 Consider the following ansatz
. X
X - —Q+ i
In(n)q} |thq ﬁZQ n v, (57) \I’(X,t)ZU(X)els(X’t), (61)

by performing analogous calculations as those for the hydra/nere u(x)=vn(x) and S(x,t) are real functions. Then,

dynamic approach. Her€(x,t) denotes again the quantum from Eq. (5% and the definition of the electric curredt
potential of Bohm introduced in Eq33). As done in Sec. = (f/m)Im(¥W¥,) one gets &/m)nS=Dyqn,, thus
Il C, Eq. (57) may be now recast in the traditional form of

Schr'_'ajinger’s equation augmented by a complex potential. S(x,t) = TquIn(n(x))—Q(t),
We find f
72 7 n Q(t) being(in principle) an arbitrary function of time. Con-
ihW,=——W, +i=D Xy sequently, the stationary profi(€1) now reads
2m X279
m
8m? ‘I’(x,t)=u(x)exp[2i 7 Dggn(u(x)—iQ(t) (. (62
+v—|1- ?ng Qv h

Inserting Eq.(62) into Eq. (60) and choosind(t) = wt for

] . .
(2Dt anq)In(n)\If+meq( ﬁ) v, (5g consistency we find
X hZ

2 "

- ——2meq)u

hou= om

Note that an additionaD(%*) quantum correction appears
involving the Bohm potential. +[V+mU°+2(2D pq+ 7Dgq)IN(u)Ju. (63
It is clear again that Eq(58) preserves mass. Also, the
energy functional associated with the wave function soluHere, primes denota derivatives. We then claim that the
tions of Eq.(58) is now given by ansatz profil€62) solves Eq(46) iff u(x) obeys the nonlin-
ear stationary Schdinger equatior(63).

h? ) We next discuss the simplest cage-U°=0. First, we
E[V]= 5 ) J¥lfdxt | Vdxt(2Dpq+ 7Dqq) point out that the constant function
ny e p{ e ] (64)

% _ X Usexp ===

‘Hln(n)ndx mequ N Jdx 2(2Dpg+ 7Dygq)

72 2 is a particular solution of Eq63), hence
(2 g [ T

8m aq RN

- p[ hw i ( MDyq t)]
=eX lw -
2(2D gt 77qu) 2Dpqt 7Dyq

is a stationary solution of the force-free nonlinear Sehro
In this section we deal with the problem of existence ofdinger equation

IV. ABOUT STATIONARY SOLUTIONS

stationary solutions to the nonlinear Sotlirger equations 5 )
(46) and(58) derived above. In this direction, we analyze the iAW, = — h_q, fD (%) P
wave function profiles leading to stationarity and make some to2m o 2 T
remarks concerning the dynamics of some physical observ- ‘]
ables in the force-free case. +| 2D, In(n)+ j _dx)\p
pq I
A. Stationary solutions to Eq. (46) x ng(J
We shall first find solutions satisfying the stationarity con- N meq{ZJ’_m_ n dx+ n Y. (89
X X

dition n,=0, which straightforwardly leads to
In order to find other nontrivial solutions we just multiply

J=DgqNx (59) Eqg. (63) by u’ and integrate against then we obtain

via Eq. (16). Hence, Eq(46) becomes F(u,u’)=keR, (66)

026110-10
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with u

1
4m(2D 4+ 7Dgyq)
= U,U, =(u’ 2_ pq qq In(u u2
(= f2+4m’Dg, W 0.5
S~

2m(hw+ 2Dyt 7D gq) 5
u-.

- u
72+ 4m?D2, ©7 = : ’ !
-0.5
Equationg66) and(67) are easily shown to have a saddle
point at (Ug,0), whereug is given by formula(64). Indeed, -1
its phase portrai{for typical values of the diffusion con- (a)

stant$ is as shown in Fig. () and Xb). A detailed scrutiny

of the phase portrait shows that the only “mathematically u’
meaningful” solutions to Eq(66) and(67) [thus to Eq.(63)]

are those at the left of the saddle pdidépicted in Fig. )] 8j
when extension by zero afIn(u) is assumed by continuity, —_;
in the sense that they do belong to &F(R) with 1<p -0.
<. This opens the way to the analysis of asymptotic be- (b)
havior and orbital stability in future work. On the other hand,
solutions corresponding to the branches above and below the
saddle point are all unbounded. Also, the only solutions
originally defined on the whole lingébefore extension by
zerog are those corresponding to the branches allocated at the 1
right of the saddle point, but all of them are not bounded
neither decaying. A typical example of the last class of solu-
tions is easily computed by assumikg-0 in Eq. (66). In
doing so we get

1 ho m(2D, .+ 7D m
u=exp{— 1 >+ (2Dpq* 7 qq)xz]
2 5 7

+
2D gt 7Dqq ﬁ2+4m2Déq 0.259.5 O.Uzs 154.73 ¢
and the associated stationary state

|

1 how mM(2D ,q+ 7D gq)
T=exp —| 1+ ) : Pq 2’7 zqq 2
2 2qu+ 77qu Ac+4m qu
m hw 2m(2D 4+ 7D
+i-Dgql 1+ + (2 Pa 2772 qq)x2>
fi 2Dpqt 7Dgq hc+4m qu
(©)
—i wt] FIG. 1. Top to bottom(a) Phase portrait of Eq63) for typical
values of the diffusion coefficients of Dekker’'s phenomenology in
) the high-temperature reginle=2 and{) =1, in units such that the
which solves Eq(65). _ . . Boltzmann constant is unity. The damping constart0.2. (b)
Another way of finding stationary solutions consists of same as(a), except T=1, Q=0.5. The damping constarit
assumingl=0. Under this assumption, E¢46) becomes =0.05 andw=0.001. (c) The counterpart of Eq(63) [with the
5 _ physical constants set if@)] with logarithmic nonlinearity of
FATEES ﬁ_\p + fD % P Byalinick?-Virl_JIa-MycieIski type, i.e., with a minus sign in front of
o2m XX 2 Faq the logarithmic term.
+[V+mUC+2qu|n(n)]\I’. (68) q’(x,t):U(X,t)eiS(t) (70)
As in the previous case, takingx,t) =n(x,t) yields and inserting it into Eq(68) one easily gets
2 ﬁz
X
Ur=Dyq U+Uxx . (69 Eu=—%uxx+[v+muc+4quln(u)]u, (71
Now, considering the wave function profile where we have used E(69) and denoted
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are actually led to stationary solutions of the type discussed
above 0,=0, see Fig. 2as sheds from Eq69). This means
that the Dolbeault-Cid dispersion result stated before does
not apply in our situation, when E@68) is reduced to the
logarithmic Schrdinger equation.

On the other hand, well-posedness and stability results
were also shown in Ref$45,46 for the logarithmic Schro
dinger equation, where the logarithmic nonlinearity was con-
sidered with opposite sign to that explored in this paper.
Nevertheless, this fact drastically changes the dynamics of
the system[see Fig. {c)]. For instance, in this situation
Gaussons are admitted as amplitude profiles for stationary
solutions[26]. In fact, the radial Gausson was showr 4%]
to be orbitally stable under radial perturbations. The single
sign choice for the logarithmic term first made [i26] and
later continued 45,46 was owing to the fact that the other
sign led to an energy functional which was not bounded from

FIG. 2. The four types of solutions(x) to Eq. (63) [with the ~ below. However, the positive sign for the logarithmic nonlin-
physical constants set in Fig(al]. Top to bottom:(a) Initial data  earity was physically justified in Ref48] as representing a
(u(0),u’(0))=(1,—0.5), (b) Initial data (2,0.5),(c) Initial data  diffusion force within the context of stochastic quantum me-

(2,0), and(d) Initial data (0.5,0.1). chanics. Indeed, by considering slowly varying profiles in
the absence of external forcpss those shown in Fig.(@)]
ds we guess that the kinetic contributigh(uy)?dx is negli-
E()=—f4;- (72 gible, so that the effective energy operatds) may be now

rewritten as

As consequence, the ans&td) is a solution of Eq(46) iff

u(x,t) solves Eqs(69) and(71) with E(t) given by Eq.(72).

Finally, from Eq.(71) it is a simple matter to show that the E[u]=2quﬁHu2In(u2)dx. (74)
stationary states given by E€.0) satisfy the following non-

linear stationary Schoinger equation ) ) )
This expression is not bounded from below. However,

72 . whether the density profile(x) has support over a domain
EW=— o Wit [VFmU™+2Dgln(n) WP with finite measure in configuration space, then it is a simple
matter to check that the energy functiofd) satisfies

By making the particular choice

c 2qu
V=U°=0, Dg.=0, (73) Efu]=-—=11,

one can easily recognize from E8) [or Eq. (60)] the

well-known logarithmic Schidinger equation. This equation |I| denoting the Lebesgue measureloff in addition the
has been widely analyzed by several authors, e.g., Cazenamermalization constrainf zn(x)dx=1 is assumed to hold,
[45,46 (in the case that the logarithmic term is preceded bythen minimization of the functional

a minus sighand Cid and Dolbeaul#7]. In particular, some

dispersion estimates and stability properties have been inves- 1
tigated. Indeed, if Eq(73) is assumed and in addition the E“[u]:f u?n(u?) + u| u?— —) dx
following regularities ! "

WoeHY(R), [X|¥oel*(R), leads to the minimizeru=|I|"Y2 where we used the

Lagrange multiplierx. Therefore, the following stronger

|x|?n,nin(n) e CO[R™;LY(R)] bound on(74)

are satisfied, then the dispersion proper
P property E[u]=—2Dpqn(|1])
Jln(x,t)dX$O In(t)) is deduced. A similar argument was carried out by Davidson

in the latest reference of those cited in Rd&i8] to conclude
was shown in Refl47] to hold for evolutionary solutions as that the usual assumption about the sign of the logarithmic
t—+oo, for all | bounded open set . Here, V(=W (x,t  term made in Refl26] is not the only reasonable possibility
=0) denotes the corresponding initial data. However, if weand that a sensible theory can be developed with the opposite
assume Eq(73) in our current settingvanishing currentwe  sign as well.
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B. Stationary solutions to Eg. (58)

We now study the existence of the following type of sta-

tionary profiles
‘I’(X,t)ZeR(X‘t)+iS(X’t) (75)

as wave function solutions to E¢8). By inserting the an-

satz(75) into Eq. (58) and splitting into real and imaginary
parts we are led to the following system of nonlinear coupled

equations
%2 h 2
Ri=— ﬁSXX_ ERXSX+ DgqRut 2DgRy, (76)
1 2 4m_,
Si= =7V~ 7(2Dpat 7Dqg)R=DgqSut 7~ DaqRux
4m h
2 2 2
5 PaRc oy 7

Again we are looking for stationary states satisfyimg
=0, or equivalentlyR;=0. Under this assumption, E76)
is reduced to

hZ
(quR——s

2m 2m

%
+2RX(quR——S) =0. (78
X X

X
We first assumér(x)=pB e R, thus Eq.(78) yields
S(x,t)=kx+h(t), keR,

h(t) being an arbitrary function of time. Denoting,=e”
and choosindh(t) = — wt with w € R, we find the following
plane wave solutions

P(x,t)= e ® Y yoeR,

to the field-free ¥=0) Eq.(58), which constitute a particu-
lar case of the profile€75). Finally, the following expression
for the k-dependence ob

Y
w(k)= ﬁkz'i‘ T(Zqu‘F 77qu)

is deduced from Eq.77).

PHYSICAL REVIEW B9, 026110(2004

Now, if R(x) is a solution of Eq.(80) then the amplitude
function

u ( X) = eR(X)
satisfies

2Mou=—2mD;u"+[V+2(2D g+ anq)In(u)]u.(Sl)

Hence, from the solutiong(x) of Eq. (81) we get the fol-
lowing stationary solutions of E458)

2m
¥ (x,t)= u(x)exp[ i T[quln(u(x))— wt]] .

In the particular cas®qq=0 we find that

2m
Y(x,t)= ¢//0exp{ R(x)—i ?wt] . YoeR,

solves Eq.(58), whereR(x) andw are connected through

1 2
w= ﬁV‘F EquR

as sheds from Eq80). Besides, ifV=0 then the simplest
(constank solution of Eq.(81) is

u=expp ———————,
2qu+ 7Dqq

therefore we may claim that

- B Mo 1 2iH
(x,t)=ex m +g ()

is a particular stationary solution of E8), with
H(t)=mDgq— (2D pqt 7D got.

We also notice that Eq81) is structurally equivalent to Eq.
(63), hence the behavior of its solutions is just as explained
in the preceding sectiofef. Figs. Xa), 1(b), and 2.

We finally investigate the stationary solutions stemming
from the vanishing of the current flux)€0). In this case it
is straightforward to verify that the position density satisfies

We now investigate the existence of other nontrivial sta-the following heat equation

tionary solutions to Eq(58). For that, we first consider the

following ansatz for the phase of the wave function

2m
S(x,t)= T(quR(x)—wt). (79

It is a simple matter to check that the functions in EP)
solve Eq.(78). Moreover, from Eq(77) we find the follow-
ing phase equation

1 1
— 2 " 1\2
w——qu[R +(R ) ]+ %V—F E(Zqu'f‘ ﬂqu)R.
(80)

ng= qunxx

whose solution is given by

1 f 2
n(x,t)=—=|[ n e—[(x—\ﬁqu /4qut]d
( ) \/m R o(Y) y

for given initial data ng(x)=n(x,t=0). Equivalently, u
= yn satisfies

u2

X
—+u
u XX

. (82
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On the other hand, Eq58) is now reduced to In the hydrodynamic approach we show that, under plau-
sible physical assumptions on tHenixed-stat¢ classical

. h? it Nyx pressure and the amplitude of the waves, which allow for
A== o Vot 7qu<7 WALV (2Dpgt 7D qq) moments closure, the quantum-mechanical nonlinear dynam-
ics of the dissipative process is reduced to a nonlinear com-
h? ) XX ni plex Schrainger equation including a friction term of
X In(n)]\lf+(m—2meq o2 V. (83 Kostin-type[27], a Drude type correctiotrepresented by a
logarithmic nonlinearity with opposite sign to that derived in
Consider the following ansatz Ref.[26]) and aO(#%3) complex, diffusive correction which
allocates the problem in a generalized Ginzburg-Landau set-
P(x,t)=u(x,t)e' O, (84)  ting. A nonlinear equation of the same type includ@(y: )

diffusive corrections is obtained through the Nelsonian sto-
Inserting this profile into Eq(83) and using Eq(82) yields  chastic approach, although in this case the pressure tensor is
fully identified via some simple algebra involving the for-
ward and backward mean velocities associated with the pro-
(85 cess. We thus conclude that physical situations described by

whereE(t) is given by Eq.(72). Hence, the wave function the quantum Fokker-Planck equatiti and(2), e.g., coher-

(84) is a solution of Eq(58) provided thatE(t) andu(x.t) ences and tunneling phenomena, in which statistical fluctua-

: : e . tions may occur allowing for dissipative effects, can be mod-
satisfy Eq.(85), which again fits the dynamics of the loga-
rithmic Schralinger equation discussed in the previous sec- eled by Eqs(42) or (57) [equivalently, by Eqs(46) or (58)].
tion. Finally, an exhaustive description of how stationarity occurs

From Eqs.(79) and (80) it is also possible to deduce the for both models has been carried out. The most remarkable

existence of solitary waves for the force-free case. Indeed, I‘Qomt in this context is the existence of solitoniclike density
' profiles, which also have mathematical interest because of

Eu=—4mD] Ux+[V+2(2D 5+ 7Dgg)In(u) u,

us define
thelr regularity properties in Sobolev spaces.
R(x.t)=R(X—ot,1) The analysis of some distinctive features of these equa-
' tions deserves of further research, such as the existence of
other particular solutiongor instance, the study of Gaussian
~ m ) S : i .
S(x,t)=S(x—vt,t) + VX — —v2t. shape, soliton or self-similar solutionshe dispersive behav-

2h ior of solutions in the long time as well as the stability prop-

i i o~ erties of thel P stationary solutions, the analysis of the large
Itis a simple matter to check that the pai,§) solves Egs. friction regime leading to the quantum Smoluchowski equa-
(76) and(77). Hence, the wave function profil@5) is now  tjon in the Wigner picture or the rigorous inviscid limit
written as which allows to recover the frictional, nondissipative Sehro

dinger equation, among others. Also, a comparative qualita-
W (x,t)= lﬂoexp[ R(x— vt)+ {ZquR(x vt)— 2wt +oux tive and n'umeri(':al analysjs for both hydrodynamic and_ sto-

chastic dissipative Schdinger models is an interesting
subject of future work.

2
v
- —t|t, eR,
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V. SUMMARY AND CONCLUSIONS

_ _ _ o APPENDIX: SOME REMARKS ON THE
In this paper we have derived two nonlinear Sciinger- MULTIDIMENSIONAL DERIVATIONS

type models for an electron gas interacting dissipatively with

a reservoir, which correspond to a hydrodynamic and a sto- The 3D version of the stochastic approach carried out in
chastic approach, respectively. We start from the oneSec. Il is straightforward by following the 1D computations
dimensional Wigner-Fokker-Planck system, which is an exoutlined above in the multidimensional case. It is significant
tension of the well-known Caldeira-Leggett master equatiorihe fact that the 3D analog of E(63) implies

including quantum diffusion in the position direction. This 3 3

; ; Py d v, vy
equation preserves mass, but neither moment nor energy are STk _p. S nl 28 L 2K Zonne
conserved along the evolution. <1 oox 99 ox; |\ axe X ko
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hence the 3D version of E¢54) is written in terms of the Finally, in the hydrodynamic approach the classical com-
following rank two tensor ponent of the tensor pressure
dvi dug\ 2 (% | _ q
Pik=Dggn f9_Xk+(9_X. —3A _kadXi- (A1) Pi= H§i§kW E—nvjvy

This identity incorporates a friction term to the classical ex-is given by

pression of the rate of strain tensor in viscous fluid dynamics.
On the other hand, things are not so simple for the 3D

calculations leading to the hydrodynamic Satinger ap-

proach. Actually, the right-hand side of thktlf component

of the) following Hamilton-Jacobi-Madelung-type equation We now define

[cf. Eq. (39)] ruling the evolution ofV,S

. n 1 P}
0[S, # 39S %S Uik(n):fo n——dn
at\ax,)  ma &L ox; ax,ax

ﬁZ
Pic=Pik(n)= ?n(<vivk>_<vi><vk>)-

In the lowest-order isotropic approximation, the local hydro-

adN ma U5, 2a 1 4n static pressure of the electron gas is known to be propor-
R ax, h &4 ox _Wquﬁ X tional to n®3, wherel denotes the identity matrix. This ex-
pression actually satisfies the condition of adiabatic
9S DO an  9°S °S transformation for an ideal gas. We have
I Y i s o
MK N =1 X IXiIXie g Pi~n>"38;,
h ( 1 4°n 4n . 14n ¢°n thus
2 n axlz &Xk n &Xi &Xi&Xk 2 (9U:)k l 3 (7Pfk s an
—— ==, ——=~n P—.
- —) o (A2) . _
n2\9Xi| X gxZax, As consequence, as in the 1D case we find
: . . . . 3
is no longer irrotational, hence E@A2) is not consistent o [ > AU [ e dn a3
from a mathematical point of view. Indeed, a sufficient con- T\ & ok dx~ _n (9—)(kdxk—|‘1’|

dition for consistency is thatW{,u,V,{(v)) be a symmetric
matrix. independently ok=1,2,3.
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