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Nonlinear Ginzburg-Landau-type approach to quantum dissipation
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We formally derive two nonlinear Ginzburg-Landau type models starting from the Wigner-Fokker-Planck
system, which rules the evolution of a quantum electron gas interacting with a heat bath in thermodynamic
equilibrium. These models mainly consist of a quantum, dissipativeO(\3) hydrodynamic/O(\4) stochastic
correction to the frictional~Caldeira-Leggett-!Schrödinger equation. The main ingredient lies in the use of the
hydrodynamic/stochastic fluid model approach associated with the quantum Fokker-Planck equation and the
identification of the associated pressure field. Then, Madelung transformations set the problem in the Schro¨-
dinger picture of dissipative quantum mechanics. We also describe the stationary dynamics associated with
both systems.
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I. INTRODUCTION AND SETTING OF THE PROBLEM

The mathematical modeling and analysis of quantum
sipation phenomena have experienced a great impulse in
years. The inclusion of dissipation within quantum mech
ics is mainly based on a system-plus-reservoir formulati
which means that energy is lost by the system and abso
by the environment~for instance, a semiconductor device
which doped regions are considered as electron reserv
injecting electrons into the active regions!. Then, the physi-
cal scenario of which these phenomena take part is tha
open quantum systems, i.e., a particle ensemble interac
dissipatively with an idealized heat bath of harmonic os
lators. The effect of the thermal bath on the motion of t
particles is typically described by two parameters: the b
temperature and the friction constant. In this direction,
qualitative study of different approaches to the quant
Fokker-Planck master equation in the Wigner representa
~or Kramers equation! has been the subject of several rece
works, e.g., Refs.@1–11#. In this paper we assume that th
interaction of an infinite in extent 1D~for notational conve-
nience! quantum gas of spinless fermions with a thermal b
~subject to moderate/high temperatures! is described by the
following Wigner-Fokker-Planck equation with nonvanis
ing friction mechanism~see Ref.@4# for a systematic deriva
tion!

Wt1jWx1Q\@V#W5LQFP@W# ~1!

with

LQFP@W#5
Dpp

m2
Wjj12l~jW!j1

2

m
DpqWjx1DqqWxx ,

~2!

where W5W(x,j,t) is the ~quasi!probability distribution
function,x andj hold for the coordinates of the electron g
and of the bath, respectively,
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Dpp5hkBT, Dpq5
hV\2

12pmkBT
, Dqq5

h\2

12m2kBT
~3!

are phenomenological constants related to the interactio

l5
h

2m
~4!

is the friction coefficient,m is the effective mass of the elec
trons,h is the damping/coupling constant of the bath,V is
the cut-off frequency of the reservoir oscillators,kB is the
Boltzmann constant,T is the bath temperature, and where

~Q\@V#W!~x,j,t !5
i

2p\ER2
@V~x1 ,t !2V~x2 ,t !#

3W~x,j8,t !e2 i (j2j8)ydj8dy ~5!

is a pseudo-differential operator associated with the gi
potentialV. This operator can make the equation to beco
nonlinear in virtue of the chosen potential. Here,\ denotes
the reduced Planck constant andx1 and x2 are the shifted
position variables

x15x1
\

2m
y, x25x2

\

2m
y. ~6!

This or similar simplified models are at the basis of quant
kinetics of open systems, microelectronics and nanos
physics. In fact, they are being currently explored in vario
fields of scientific interest mainly stemming from meso
copic mechanics, such as quantum Brownian motion, qu
tum optics, semiconductor device applications, quant
measurement theory, decoherence and emergent classic
beam propagation in accelerators or activated chemical
cesses, among others.

When Dpq and Dqq are set to zero, the well-known
Caldeira-Leggett master equation@12# is obtained. It is re-
markable the fact that the Wigner-Fokker-Planck equat
~1! and ~2! is charge-preserving, i.e.,
©2004 The American Physical Society10-1
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q5E
R
n~x,t !dx

is an invariant of motion, where

n~x,t !5E
R
W~x,j,t !dj ~7!

stands for the electron position density. However, the dif
sive character of the system preventsj and j2 to be colli-
sional invariants. Indeed, defining the current and the e
tron kinetic energy densities by

J~x,t !5E
R
jW~x,j,t !dj, ~8!

E~x,t !5
1

2ER
j2W~x,j,t !dj, ~9!

respectively, one easily finds

E
R
jLQFP@W#dj522lJ2

2

m
Dpqnx1DqqJxx , ~10!

1

2ER
j2LQFP@W#dj5

Dpp

m2
n24lE2

2

m
DpqJx1DqqExx .

~11!

Thus, the momentum-and-energy conservation kinetic id
tities do not hold in the frictional/diffusive case.

Another interesting aspect is that the Wigner-Fokk
Planck equation~1! and ~2! is written in so-called Lindblad
form ~see Ref.@13#, Sec. 2 of Ref.@1#! provided that the
following constraint

DppDqq>Dpq
2 2 1

4 \2l2

is satisfied by the diffusion coefficients. Equivalently,
terms of the original thermal bath constants this condit
reads

\V<A3pkBT

for nontrivial situations (h5” 0). Both relations can be foun
in @5,14#. Then, the associated density matrix operator~a
linear, nonnegative, self-adjoint trace class opera!
R(t):L2(R)→L2(R), defined by

~R~ t ! f !~x!5E
Ry

f ~y!r~x,y,t !dy,

preserves positivity under temporal evolution:
02611
-

c-

n-

-

n

r

]r

]t
52

i

\
~Hx2Hy!r2l~x2y!•~¹x2¹y!r

1S Dqqu¹x1¹yu22
Dpp

\2
ux2yu2

1
2i

\
Dpq~x2y!•~¹x1¹y!D r.

Here,r5r(x,y,t)PL2(Rx3Ry) is the density matrix func-
tion and

H52
\2

2m
Dx1V~x,t !

is the electron Hamiltonian,Hx andHy standing for copies of
H acting on thex andy variables, respectively. Accordingly
the problem is physically meaningful and mathematica
consistent~see@1,2# for details!.

Associated with the quantum Fokker-Planck system~1!–
~6! there is the following macroscopic fluid model:

nt1~nu!x5Dqqnxx , ~12!

ut1S u22Dqq

nx

n Dux52
1

m
Vx2

1

n
~2E2nu2!x22lu

2
2

m
Dpq

nx

n
1Dqquxx , ~13!

which yields the propagation laws for the densityn(x,t) @cf.
Eq. ~7!# and the fluid mean velocity

u~x,t !5
J~x,t !

n~x,t !
~14!

and incorporates quantum dissipation within the context
Fokker-Planck scattering. This model is to be compared
the hydrodynamic formulation of pure state de Broglie
Bohm quantum mechanics@15,16#, consisting of the follow-
ing current continuity equation and momentum equation~see
also Refs.@17–19# for recent analysis!:

nt1~nu!x50,

ut1uux52
1

m
~V1Q!x ,

whereQ is the quantum potential of Bohm defined by

Q52
\2

2m

~An!xx

An
. ~15!

Notice that the balance equation~12! for n(x,t) is allowed to
depend not only on the gas density, as occurs in the u
kinetic theory of gases and liquids, but also on its gradie
In fact, density-gradient theories have already proved to h
a significant range of physical applicability. The drif
diffusion system~12! and~13! has been recently dealt with i
0-2
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@6,7#, where existence of classical solutions to the station
problem as well as exponential convergence of the solut
towards the thermal equilibrium state in the long time we
shown.

Far from the standard arguments connecting b
quantum-mechanical Wigner and Schro¨dinger pictures, based
on density matrix approaches, the hydrodynamic equat
~12! and~13! become now the key tool in our derivations~in
the spirit of Refs.@20–22#!, as we shall see later on. Actual
we show that, for a large class of quantum mixed states,
Wigner-Fokker-Planck system can be reduced to an ex
effective nonlinear Ginzburg-Landau-type equation wh
accommodates quantum dissipation via the introduction
diffusion currents. In the hydrodynamic approach, this eq
tion is even shown to contain additional nonlinearities co
ing out from an adequate identification of the pressure fie
The connection between open quantum systems
Ginzburg-Landau theories has been already discussed in
ferent physical contexts, e.g., trapped modes of cold, dil
weakly interacting Bose gases@23#, evaporate cooling in
Bose-Einstein condensates@24#, or cosmological quantum
kinetic theory@25#.

The paper is structured as follows: In Sec. II we give
hydrodynamic approach to quantum dissipation in the Sch¨-
dinger framework. To this aim, we first introduce the qua
tum fluid model associated with the one-dimensional~1D!
Wigner-Fokker-Planck system inj-moments picture. Then
we proceed to the identification of the classical and quan
fluid dynamical pressures. Also, we justify the presence
the quantum Bohm potential in the fluid equations as wel
that of an additional effective pressure potential. Finally,
~formal! nonperturbative derivation of an effective, dissip
tive nonlinear Ginzburg-Landau-type equation for the qu
tum gas is carried out. Section III is devoted to investigat
different ~stochastic! approach leading to a nonlinear, diss
pative Schro¨dinger-type equation. To the best of our know
edge, both the hydrodynamic and stochastic Ginzbu
Landau type models derived in this paper have not been d
with before in the literature. In Sec. IV we make a detail
analysis of the existence of stationary solutions to the n
linear Ginzburg-Landau-type equations derived in Sec. II a
III. Also, for some particular cases we find explicit solutio
and describe their main dynamical properties. Finally, so
technical remarks on the 3D derivations are collected in
Appendix.

II. THE HYDRODYNAMIC APPROACH

In this section we are concerned with a hydrodynam
~quantum fluid! approach to the Wigner-Fokker-Planck sy
tem. Actually, we derive a nonlinear Ginzburg-Landau-ty
equation@see Eq.~46! below# which accounts for quantum
friction and diffusion effects. Besides the well-known log
rithmic nonlinearity first studied by Byalinicki-Birula an
Mycielski in Ref. @26# and the nonlinear, frictional termhS
proposed by Kostin in@27#, whereS stands for the phase o
the wave function, our equation retains aO(\3) nonlinear
complex potential describing quantum position diffusion.
proceed, we first recompute the fluid equations associ
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with the quantum Fokker-Planck system in terms of the c
rent velocity and the classical and quantum parts of the p
sure field@cf. Eq. ~31! below#. Then, we use the polar form
of the wave function to transform the fluid equations into
Bohm-Madelung-type Schro¨dinger equation which include
dissipative and hydrodynamic terms.

A. The fluid model

Following the standardj-moments picture method@cf.
Eqs. ~7!–~11!#, one gets from the Wigner-Fokker-Planc
equation~1!–~2! the following quantum hydrodynamic sys
tem of irrotational flow equations

nt1~nu!x5Dqqnxx , ~16!

Jt12Ex1
1

m
nVx522lJ2

2

m
Dpqnx1DqqJxx . ~17!

Equation~16! is easily recognized as a Fokker-Planck equ
tion. By using Eqs.~14! and ~16!, the current equation~17!
may be recast in terms of the fluid mean velocity as

ut1uux52
1

m
Vx2

1

n
~Pu!x22lu2

2

m
Dpq

nx

n
1F~n,u!,

~18!

where we have identified the scalar pressure field as

Pu~x,t !52E~x,t !2n~x,t !u~x,t !2 ~19!

as can be simply checked after comparison with Eq.~13! ~see
Ref. @28# for a general setting!. Here,Dqq plays the role of a
kinematic viscosity and along withDpq measures in some
sense the strength of gradient effects in the gas-reservoir
tem. On the other hand, the cross diffusion (Dpq term! gives
rise to so-called Drude correction, which takes into acco
temperature effects. This term vanishes in the hig
temperature limitkBT@\V. Finally, F(n,u) represents the
dissipative force given by

F~n,u!5DqqS 2
nx

n
ux1uxxD . ~20!

Under this hydrodynamic approach the quantum fluid can
seen as the medium in which the particles are transpor
Actually, the electron ensemble assumes the form of a hig
localized inhomogeneity moving with the local fluid mea
velocity.

Define the current velocity

vªu2Dqq

nx

n
. ~21!

Then, Eq.~16! becomes the usual continuity equation of flu
mechanics~mass conservation law!

nt1~nv !x50. ~22!

Also, v(x,t) satisfies the following partial differential equa
tion
0-3
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v t1vvx52
1

m
Vx2

1

n
~Pv!x22lv2

2

m
Dpq

nx

n
1G~n,v !,

~23!

where the position-diffusion kernelG(n,v) is now given by

G~n,v !52DqqFvxx12
nx

n
vx1

nxx

n
v2l

nx

n G1Dqq
2 nxxx

n
.

~24!

Note that we have used Eqs.~18!, ~21!, and~22!.

B. Hydrodynamic to quantum transition: A quantum potential
and diffusion representation

Now we are concerned with the derivation of an extend
Bohm’s causal approach to the viscous quantum hydro
namic system introduced above. To proceed, we first obs
that the moment system~16!–~20! @alternatively Eqs.~22!–
~24!# is not closed, as the expression for the pressure
volves the second order moment*Rj

j2W(x,j,t)dj. Then,
some ‘‘admissible’’ closure relations are required.

Denote Re(w) and Im(w) the real and imaginary parts o
the complex functionw, respectively. We also denotew̄ the
complex conjugate ofw. Following the ideas in Ref.@21#,
we now suppose thatW(x,j,t) is the Wigner distribution
associated with a quantum mixture of~complex! states
cn(x,t), that is,

W~x,j,t !5
1

2p (
k>1

lkE
R
c̄k~x2 ,t !ck~x1 ,t !e2 iyjdy

with the notation introduced in Eq.~6!, where thelk’s are
the occupation probabilities

lk>0, (
k>1

lk51.

Also, we consider the local diffusion currentj (x,t) to be
defined by

jªnv5J2Dqqnx

5
\

m (
k>1

lkIm~ c̄k~ck!x!2Dqq(
k>1

lk~ ucku2!x , ~25!

so as to fit Fick’s law. Then, the pressure field~19! can be
rewritten in terms of the quantum statesck ~omitting the (x,
t) dependence for the sake of simplicity! as

Pv5E
R
j2Wdj2

j 2

n

52
\2

2m2 (
k>1

lk$Re@c̄k~ck!xx#2u~ck!xu2%

2
1

(
k>1

lkucku2
S \2

m2 H (
k>1

lkIm@c̄k~ck!x#J 2
02611
d
y-
ve

n-

2
4\

m
DqqH (

k>1
lkIm@c̄k~ck!x#J H (

k>1
lkRe@c̄k~ck!x#J

14Dqq
2 H (

k>1
lkRe@c̄k~ck!x#J 2D .

By writing the quantum states in polar form

ck~x,t !5Ak~x,t !ei /aSk(x,t),

whereAk(x,t) andSk(x,t) hold for the amplitude~modulus!
and the phase~argument! of ck(x,t), respectively, and where

a52mDqq , ~26!

we can split

Pv5Pv
c1Pv

q ,

where

Pv
c5

\2

m2a2H (
k>1

lkAk
2~Sk!x

22

F (
k>1

lkAk
2~Sk!xG2

(
k>1

lkAk
2 J

is the classical part of the pressure and

Pv
q5

\2

2m2 (
k>1

lk@~Ak!x
22Ak~Ak!xx#

1
2\

m2

F (
k>1

lkAk
2~Sk!xGF (

k>1
lkAk~Ak!xG

(
k>1

lkAk
2

24Dqq
2

F (
k>1

lkAk~Ak!xG2

(
k>1

lkAk
2

~27!

is the quantum correction of order\4 @recall that Dqq
5O(\2)] to the classical pressure~see Refs.@17,29# for a
physical justification in a nondissipative context!.

Some observations are now in order:
~i! In the absence of dissipation in thex direction (Dqq

50), the difference between the classical zero-tempera
Euler equations and the hydrodynamic equations~16!–~20!
@or Eqs.~22!–~24!# mainly lies in the quantum contribution

\2

2m2 (
k>1

lk@~Ak!x
22Ak~Ak!xx#

of order\2 appearing in the velocity equation, which plays
central role in the quantum potential approach.

~ii ! The classical pressurePv
c obviously vanishes in the

purely quantum~single-state! case.
0-4
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~iii ! In standard dissipative quantum mechanics, the di
sion coefficient in the Fokker-Planck equation~16! reads

D5
\

2m
,

which yields the usual valuea5\. We are, however, con
cerned with a generalized, nonstandard quantum setting~26!
~see Ref.@30# for details! involving Dqq as the diffusion
coefficient of the process.

Now we consider the average velocities associated w
the wave functionsck , defined by

vk5
1

m
~Sk!x .

It is a simple matter to corroborate thatPv
c can be rewritten

in terms of the velocity variance as

Pv
c5

\2

a2
n~^v2&2^v&2!,

where the valueŝvg& represent the statistical averages giv
by

^vg&5
1

n (
k>1

lkAk
2vk

g .

In this way, we recover the standard expression for the c
sical pressure function~see Ref.@28#!. Also, Eq. ~27! now
reads

Pv
q5

\2

2m2 (
k>1

lk@~Ak!x
22Ak~Ak!xx#1

2\

m F (
k>1

lkAk~Ak!xG

3^v&24Dqq
2

F (
k>1

lkAk~Ak!xG2

(
k>1

lkAk
2

. ~28!

In order to close the moment system we need some c
tinuity equations relating the classical and quantum press
to the particle density. To this aim, we first make the stand
assumption that the classical pressure only depends on
position density and then consider that the amplitudes ar
equal, i.e.,

Pv
c5Pv

c~n!, ~29a!

Ak~x,t !5A~x,t !5An~x,t ! ;kPN, ~29b!

so that Eq.~28! becomes
02611
-

th

s-

n-
es
d
the
all

Pv
q5

\2

2m2
@~An!x

22An~An!xx#

1
2\

m
An~An!x^v&24Dqq

2 ~An!x
2

52
\2

4m2
nS nx

n D
x

1
\

m
nx^v&2Dqq

2
nx

2

n
. ~30!

In the Pv
c-Pv

q representation, the current velocity equati
~23! now reads

v t1vvx52
1

m
Vx2

1

n
~Pv

c!x2
1

n
~Pv

q!x22lv

2
2

m
Dpq

nx

n
1G~n,v !

52
1

m
Vx2

1

n
~Pv

c!x2
1

n
~Pv

q!x

22S Dpq

m
1lDqqD nx

n
1

2

n
~Dqqj xx2l j !

1Dqq
2 S nxxx

n D ~31!

after straightforward calculations, where we have used
first identity in Eq.~25!.

Now, taking into account Eqs.~30! and~31!, the physical
assumptions~29a! and ~29b! and the following identities in-
volving the average velocitŷv&:

1

n
~Pv

q!x5S \2

4m2
2Dqq

2 D nx

n2 F2nxx2
nx

2

n G2
\2

4m2 S nxxx

n D
1

\

m

1

n
~nx^v&!x ,

j 5
\

a
n^v&2Dqqnx ,

v t5
\

a
^v& t1

\

a
DqqF S nx

n
^v& D

x

1^v&xxG2Dqq
2 S nxx

n D
x

,

vvx5
\2

a2
^v&^v&x2

\

a
DqqS nx

n
^v& D

x

1Dqq
2 nx

n S nx

n D
x

,

we are led to
0-5
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^v& t52
\

a
^v&^v&x2

a

m\
~V1mUc!x22l^v&

2
a

m\ F2Dpqln~n!1S 12
4m2

\2
Dqq

2 D QG
x

1DqqS 2
nx

n
^v&x1^v&xxD

2
a

\
Dqq

2 Fnx

n S nx

n D
x

2S nxx

n D
x
G . ~32!

Here,

Q52
\2

2mF ~An!xx

An
G52

\2

8mF2
nxx

n
2

nx
2

n2G ~33!

is the~enthalpy related! nonlocal quantum potential of Bohm
@cf. Eq. ~15!# which represents current arising as a result
density gradient effects. Also,

Uc~x,t !5E
0

n ~Pv
c!n8

n8
dn8 ~34!

is an additional effective potential stemming from the sta
tical mixture of quantum states. Thus, to the lowest order
quantum open system behaves as an ideal gradient gas~see
Ref. @29# for details! subject to frictional and dissipative in
teractions.

It is well known that quantum potentials play a cruc
role in the hydrodynamic description of quantum theory
motion ~see, for instance, Refs.@18,31#!. In particular, the
Bohm potential~33! is basically a field through which th
electrons interact with themselves, so thatQx can be inter-
preted as a quantum diffusion term yielding a theory wh
contains both quantum-mechanical confinement effects
tunneling. Bohm’s potential has been used, for example
study wave packet tunneling through barriers. Then, in
picture of the balance of mass and balance of momen
equations~22! and ~32!, the overall motion of the system
under study can be thought of as the motion of a quan
fluid having densityn(x,t) and velocityv(x,t), under the
influence of the potentialV(x,t) augmented by the quantum
Bohm potentialQ(x,t), the effective potentialUc(x,t) and
some viscosity and dissipation forces. The effects due to
appearance of these nonstandardDpq and Dqq terms yield
significant deviations from what is expected in the pur
classical case, as we shall see later on.

C. Derivation of an effective time-dependent Ginzburg-
Landau-type equation

This section is devoted to the search for a Schro¨dinger
representation of the quantum hydrodynamic system der
in Sec. II B. This is done by defining the following effectiv
wave function~in modulus-argument representation!

C~x,t !5An~x,t !e( i /a)S(x,t) ~35!
02611
f

-
e

f

h
nd
to
e
m

m

e

d

and considering the velocity field of the fluid flow generat
by the wave function~35! to be given by the standard rela
tion

^v&5
1

m
Sx . ~36!

The hydrodynamic to quantum approach stemming fr
Eqs. ~35! and ~36! is based on the well-known Madelun
transformations@32#. Indeed, the connection between qua
tum mechanics and classical hydrodynamics was already
served in 1927 by O. Madelung, in the context of the se
classical approach to nonlinear Schro¨dinger equations~see
Ref. @19# for a recent review!. Since then, Madelung-type
transformations have been succeedingly used in various
entific fields, e.g., galaxy clustering studies~see Sec. 4 of
Ref. @33#! or multistream plasma dynamics@20#. Choosing
nonvanishing n(x,t) and nonsingularS(x,t) makes the
Madelung transformations meaningful and prevents the a
ciated hydrodynamic equations@cf. Eqs. ~38! and ~39! be-
low# to become singular. Besides, in Ref.@34# T. Wallstrom
observed that the single-valuedness quantization rule

G5 R
g
v~x,t !ds~x!52kp

\

m
~37!

is needed in order to establish the formal equivalence
tween Madelung and Schro¨dinger equations, wherekPZ and
g is any closed loop~in our case, the circulationG is re-
quired to be an integer multiple of (2pa)/m). This situation
is pointed out to arise only in two or more space dimensio
when removal of the nodal set$C50% of vortex configura-
tions does disconnect the topology. The quantization con
tion ~37! might also be necessary for Madelung-Schro¨dinger
equivalence to hold in 1D whether the topology of the c
responding space is nontrivial.

In the sequel we shall assume for simplicity adequ
boundary conditions on the density, the phase, and the
current in order to avoid boundary contributions at infin
along the derivation. In terms of the amplitude and the ph
of C, the quantum fluid system consisting of Eqs.~22! and
~32! reads

nt1
\

ma
~nSx!x2Dqqnxx50, ~38!

St1
\

2ma
Sx

252
a

\
~V1mUc!22lS

2
a

\ F2Dpqln~n!1S 12
4m2

\2
Dqq

2 D QG
1DqqS 2E

2`

x nx

n
Sxxdx1SxxD

1
am

2\
Dqq

2 1

n S 2nxx2
nx

2

n D , ~39!
0-6
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which is a dispersive regularization of the quantum Eu
system including quantum friction and dissipation corre
tions. Combining now Eqs.~38! and~39!, using the identities
~35! and ~25! and taking into account the following expre
sions for the derivatives of the phase

Sz5
ia

2

1

n
~nz22C̄Cz!, ~40!

Sxx5
ia

2 F S nx

n D
x

22C̄S Cx

n D
x

22
uCxu2

n G , ~41!

wherez can be replaced byx or t indistinctively, one gets
after simple but lengthy algebra the following exact, nonl
ear time-dependent Ginzburg-Landau-type equation

i\C t5S 2
\2

2m
1 i\DqqDCxx2 i\Dqq

nx

n
Cx

1S V1mUc12Dpq ln~n!1hE
2`

x J

n
dxDC

22mDqqF E
2`

x nx

n S J

nD
x

dxGC

1
i\

2
Dqq

1

n S 2uCxu21
nx

2

n DC. ~42!

This equation extends that earliest derived in Ref.@35# by
Doebner and Goldin from the simplest form of continu
equation of Fokker-Planck type and looks into the nature
open quantum systems and quantum fluid transitions. In
context~that is, when the diffusion constant is assumed to
Dqq), the Doebner-Goldin nonlinear modification to th
Schrödinger equation is given by

i\C t5S 2
\2

2m
1 i\DqqDCxx1S V1 i\Dqq

uCxu2

n DC,

which constitutes a reduced model for irreversible and di
pative quantum systems. The presence of a logarithmic n
linearity in Eq. ~42! is justified because we assumed a co
stant temperature@18#. Otherwise, the Wigner-Fokker-Planc
system would not be quantum-mechanically correct~see Ref.
@1#! in contrast to the classical situation. Furthermore, ln(n)
can be seen as an approximation ofV up to O(\2) terms
when V is assumed to be the Hartree electrostatic poten
solving the Poisson equationVxx5n @17#. Some meaningful
physical interpretations have been given to the appearanc
the potential ln(n) in the Schro¨dinger equation. Indeed, it ca
be understood as the effect of statistical uncertainty or as
potential energy associated with the information encode
the matter distribution described by the probability dens
n(x,t) ~see @36# and references therein for a wide discu
sion!.

In deriving Eq.~42! we have used the relations~4! and
~26!, as well as the following identities involving the curre
density
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n
5

\

ma
Sx ,

C̄Cx5
nx

2
1

im

\
J. ~43!

Equation ~42! does incorporate quantum corrections
order\2 and\3 to the nonlinear, frictional~Kostin-Caldeira-
Leggett-!Schrödinger equation

i\C t52
\2

2m
Cxx1FV1mUc1hE

2`

x J

n
dxGC. ~44!

Indeed, Eq.~42! can be rewritten as

i\C t52
\2

2m
Cxx1FV1mUc1hE

2`

x J

n
dx1L\2GC1L\3,

where theO(\2) term @cf. Eq. ~3!# is given by

L\252Dpqln~n!

and where@cf. Eq. ~25!#

L\3522mDqqF E
2`

x nx

n S J

nD
x

dxGC

1 i\DqqFCxx2
nx

n
Cx1

1

2n S 2uCxu21
nx

2

n DCG
enters into the equation as a complex potential of order\3.
This is in good agreement with the physical interpretation
complex potentials, as they have been used in the litera
to simulate dissipative processes and decoherence effec
the transition regions of small quantum devices.

Reciprocally, the quantum hydrodynamic model~38! and
~39! is recovered via the Madelung transformation~35! by
simply taking real and imaginary parts in both sides of E
~42!. We note that Eq.~42! is easily checked to be still charg
preserving, that is

d

dt S ER
uC~x,t !u2dxD 50,

by just multiplying the equation timesC̄, integrating against
x and taking imaginary parts. Also, following the standa
averaging techniques we obtain the following energy fu
tional

E@C#~ t !5
\2

2mE
R
uCxu2dx1E

R
n~V1mUc!dx

1hE
R
nS E

2`

x J

n
dxD dx12DpqE

R
nln~n!dx

2mDqqE
R
nF S J

nD
x

12E
2`

x nx

n S J

nD
x

dxGdx

~45!
0-7
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associated with the solutions of Eq.~42!, which of course is
not a preserved quantity for the Fermi system~see Refs.@1,2#
for details at the Wigner level!.

It is significant that theDpp term in Eq. ~1! does not
contribute to the final form of Eq.~42!. This is due to the fact
that the moment system is truncated at the level of the
rent equation, while theDpp contribution is only ‘‘visible’’ at
the next level, i.e., that of the kinetic energy equation@cf.
Eqs.~10!–~11!#. Indeed, ifl, Dpq , andDqq are set to zero
~this is the case analyzed in Ref.@1#!, Eq. ~42! becomes the
usual Schro¨dinger equation with an additional~mixed-state!
effective potential Uc(x,t) ~as in Ref. @21#!. Also, the
Caldeira-Leggett model (Dpq5Dqq50, see Ref.@12#! re-
duces to Eq.~44! in this approximation.

Last but not least, Eq.~42! can be rewritten in the tradi
tional form of the Schro¨dinger equation as

i\C t52
\2

2m
Cxx1

i\

2
DqqS nxx

n DC

1S V1mUc12Dpqln~n!1hE
2`

x J

n
dxDC

2mDqqF2E
2`

x nx

n S J

nD
x

dx1S J

nD
x
GC ~46!

by observing that

Cxx2
nx

n
Cx1

1

2n S 2uCxu21
nx

2

n DC

5Fnxx

2n
1

im

\

1

n S Jx2
nx

n
JD GC,

which is a simple consequence of the identity~43!. Besides
the logarithmic nonlinearity, under the ‘‘classical’’ Schro¨-
dinger formulation~46!, it is more clearly identifiable than in
Eq. ~42! the presence of a friction term due to the veloc
densityJ/n and a diffusion term due to the diffusive veloci
densityDqq(nx /n).

In the especial case of a zero-temperature 1D electron
the classical pressure is known to be given by~see, e.g., Ref.
@21#!

Pc~n!5
mvF

2

3n0
2

n3,

wherevF5(p\/2m)n0 is the Fermi velocity andn0 stands
for the equilibrium reference density. Accordingly, the effe
tive potentialUc @cf. Eq. ~34!# becomes

Uc~x,t !5E
0

n ~Pc!n8

n8
dn85

p2\2

8m
uCu4.

The resulting configuration is similar~see Ref.@37#! to that
standing for a 1D mean-field Boson gas in the dilute lim
and strong coupling condition. Another interesting exam
arises in the 3D case, where the multidimensional analo
Eq. ~42! now incorporates an additional effective potent
02611
r-

as,

-

t
e
of
l

Uc(x,t) which is proportional touCu4/3 ~see the Appendix!.
This potential comes out from anXa approximation of the
Hartree-Fock exchange-correlation potential~Thomas-Fermi
approach! when the charge density variation is not too rap
and is commonly used in practical numerical calculations

III. THE STOCHASTIC APPROACH

This section is devoted to the derivation of a Ginzbu
Landau-type model from the Wigner-Fokker-Planck equ
tion, still accounting for quantum friction and dissipation e
fects. The resulting Ginzburg-Landau type equation@cf. Eq.
~58! below# incorporates a logarithmic nonlinearity to a pa
ticular nonlinear Schro¨dinger equation of the Doebner
Goldin class@35#. The way to proceed now lies on a differe
perspective. Actually, we shall use stochastic techniq
based on consideration of forward and backward veloci
associated with quantum Brownian motion and time reve
invariance. Although seemingly simpler than Eq.~46!, the
Eq. ~58! retains terms up to orderO(\4).

We now assume that the Wigner-Fokker-Planck equa
~1! and~2! @or more precisely the moment system consist
of Eqs. ~16! and ~18!–~20!# is associated with a stochast
process. Indeed, assuming Brownian motion of the elec
ensemble~for instance, produced by the interaction of th
electrons with a ionic lattice!, the electrons follow the path
of the stochastic Langevin equation~Newton’s law!

mx92Vx5F~ t !. ~47!

Here, the effect of the coupling between the system and
thermal bath is modeled by the stochastic force

F~ t !5G~ t !22lx8~ t !,

which consists of a mean~friction! force proportional to the
velocity plus a fluctuating termG(t), G(t) being a white
noise random force with independent, identically Gauss
distributed processes of~constant! variance 2lm2u, with u
5(kBT)/m. Applying now Ito’s equation for the probability
density associated with the solutions of Eq.~47! yields the
well-known Vlasov-Fokker-Planck equation

f t1j f x2
1

m
Vxf j52l~j f 1u f j!j ~48!

~see, for example, the introduction of Ref.@38#, where this
derivation was sketched for a quantum Fokker-Planck re
ation model!. The quantum-mechanical analog of Eq.~48! is
our Wigner-Fokker-Planck equation~1! and~2! ~see Ref.@1#
for details!. Actually, in the classical limit\→0 we have
Dqq→0,Dpq→0 and formally

LQFPW→ Dpp

m2
Wjj12l~jW!j ,

Q@V#W→2
1

m
VxWj ,
0-8
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such that the classical Vlasov-Fokker-Planck equation~48! is
recovered.

In this picture, Eq.~16! admits a classical interpretation i
terms of Nelsonian stochastic mechanics@39# ~see also Refs
@40–42# and references therein!. This theory, initiated in
1952 by Fe´nies @43#, is intended to give a description o
quantum mechanics in terms of classical probability densi
for particles undergoing Brownian motion with diffusive in
teractions. In this framework, E. Nelson showed in Ref.@39#
that the evolution of a particle subject to nondissipat
Brownian motion is equivalent~in the sense of its probability
and current density! to that described by the Schro¨dinger
equation~see also Refs.@42,44#!. Fruitful applications of this
stochastic picture are in order nowadays, see, for insta
Refs. @22,30# where the nonlinear dynamics of particles
accelerators has been studied in the framework o
stochastic-hydrodynamic model for the collective motion
a particle beam. We shall make here some extensions aim
at the frictional, dissipative case.

Under the Brownian motion assumption, the particles
subject to the action of forward and backward velocity fie
u1 and u25u122uo , respectively, which enter into th
density equation~16! as

nt1~nu6!x56Dqqnxx . ~49!

Here,uo denotes the so-called osmotic velocity defined b

uoªDqq

nx

n
~50!

according to Fick’s law, which sets the exact balance
tween the osmotic currentnuo and the diffusion curren
Dqqnx and somehow controls the degree of stochasticity
the process by informing us about how much nondiffer
tiable the random trajectories of the particles are. Now, su
ming up both forward and backward Fokker-Planck eq
tions in Eq.~49! and introducing the current velocity

vª
u11u2

2
5u12uo5u12Dqq

nx

n
,

we recover the continuity equationnt1(nv)x50. On the
other hand, by defining the mean backward derivative of
forward velocity as

~D2u1!~x,t !ª~u1! t1u2~u1!x2Dqq~u1!xx ,

Eq. ~18! can be rewritten~for u1) as

D2u152
1

m
Vx2

1

n
~Pu1

!x22lu12
2

m
Dpq

nx

n
. ~51!

We now perform time inversion in Eq.~51! according to the
following transformations for the time variable, the bac
ward and forward velocities and the mean backward and
ward derivatives@40#:

t°2t, zt°2zt , u6°2u7 , D6°2D7 .
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Since the internal stress tensorPu1
is a dynamic character

istic of motion, its divergence changes sign under time inv
sion. Accordingly, after time inversion Eq.~51! becomes

D1u252
1

m
Vx1

1

n
~Pu1

!x12lu22
2

m
Dpq

nx

n
, ~52!

with

~D1u2!~x,t !ª~u2! t1u1~u2!x1Dqq~u2!xx .

A similar procedure can be followed in Ref.@22#. Subtracting
Eq. ~52! from Eq. ~51! yields

~uo! t1v~uo!x5vxuo1Dqqvxx22lv2
1

n
~Pu1

!x ,

~53!

or equivalently the following expression for the pressu
field

Pu1
52Dqqnvx22lE

2`

x

jdx, ~54!

where j 5nv and we used Eq.~50!.
We then sum up Eqs.~51! and~52!. We obtain the follow-

ing frictional version of Nelson’s stochastic generalization
Newton’s law

v t1vvx52
1

m
Vx22S lDqq1

Dpq

m D nx

n

2Dqq
2 Fnx

n S nx

n D
x

2S nxx

n D
x
G . ~55!

Invoking the statistical velocity averages introduced in S
tion II B, we get from Eq.~55! the following transport equa
tion for the momentum density

^v& t1
\

a
^v&^v&x52

a

m\
Vx2

2a

\ S lDqq1
Dpq

m D nx

n

2
a

\
Dqq

2 Fnx

n S nx

n D
x

2S nxx

n D
x
G2Dqq^v&xx

2
4ma

\3
Dqq

2 Qx , ~56!

a still standing for Eq.~26!. The Schro¨dinger-like equation
associated with Eq.~56! comes out by using the Madelun
wave function~35!. Indeed, identifying the average mome
tum ^v& with a multiple of the phase gradient@cf. Eq. ~36!#
and taking into account the relations~40! and ~41!, we find
the following Ginzburg-Landau-type equation
0-9
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i\C t5S 2
\2

2m
2 i\DqqDCxx1 i\Dqq

nx

n
Cx

1FV2S 12
8m2

\2
Dqq

2 D QGC1~2Dpq1hDqq!

3 ln~n!C2 i\DqqS 4m

\2
Q1

uCxu2

n D C, ~57!

by performing analogous calculations as those for the hyd
dynamic approach. Here,Q(x,t) denotes again the quantu
potential of Bohm introduced in Eq.~33!. As done in Sec.
II C, Eq. ~57! may be now recast in the traditional form o
Schrödinger’s equation augmented by a complex potent
We find

i\C t52
\2

2m
Cxx1 i

\

2
Dqq

nxx

n
C

1FV2S 12
8m2

\2
Dqq

2 D QGC

1~2Dpq1hDqq!ln~n!C1mDqqS J

nD
x

C. ~58!

Note that an additionalO(\4) quantum correction appear
involving the Bohm potential.

It is clear again that Eq.~58! preserves mass. Also, th
energy functional associated with the wave function so
tions of Eq.~58! is now given by

E@C#5
\2

2mE
R
uCxu2dx1E

R
Vndx1~2Dpq1hDqq!

3E
R

ln~n!ndx2mDqqE
R
S nx

n D Jdx

2S \2

8m
2mDqq

2 D E
R

nx
2

n
dx.

IV. ABOUT STATIONARY SOLUTIONS

In this section we deal with the problem of existence
stationary solutions to the nonlinear Schro¨dinger equations
~46! and~58! derived above. In this direction, we analyze t
wave function profiles leading to stationarity and make so
remarks concerning the dynamics of some physical obs
ables in the force-free case.

A. Stationary solutions to Eq. „46…

We shall first find solutions satisfying the stationarity co
dition nt50, which straightforwardly leads to

J5Dqqnx ~59!

via Eq. ~16!. Hence, Eq.~46! becomes
02611
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i\C t52
\2

2m
Cxx1~V1mUc!C1~2Dpq1hDqq!ln~n!C

1S i\

2
Dqq2mDqq

2 Dnxx

n
C. ~60!

Consider the following ansatz

C~x,t !5u~x!eiS(x,t), ~61!

where u(x)5An(x) and S(x,t) are real functions. Then
from Eq. ~59! and the definition of the electric currentJ

5(\/m)Im(C̄Cx) one gets (\/m)nSx5Dqqnx , thus

S~x,t !5
m

\
Dqqln„n~x!…2V~ t !,

V(t) being~in principle! an arbitrary function of time. Con-
sequently, the stationary profile~61! now reads

C~x,t !5u~x!expH 2i
m

\
Dqqln„u~x!…2 iV~ t !J . ~62!

Inserting Eq.~62! into Eq. ~60! and choosingV(t)5vt for
consistency we find

\vu5S 2
\2

2m
22mDqq

2 Du9

1@V1mUc12~2Dpq1hDqq!ln~u!#u. ~63!

Here, primes denotex derivatives. We then claim that th
ansatz profile~62! solves Eq.~46! iff u(x) obeys the nonlin-
ear stationary Schro¨dinger equation~63!.

We next discuss the simplest caseV5Uc50. First, we
point out that the constant function

u[expH \v

2~2Dpq1hDqq!
J ~64!

is a particular solution of Eq.~63!, hence

C5expH \v

2~2Dpq1hDqq!
1 ivS mDqq

2Dpq1hDqq
2t D J

is a stationary solution of the force-free nonlinear Sch¨-
dinger equation

i\C t52
\2

2m
Cxx1

i\

2
DqqS nxx

n DC

1S 2Dpqln~n!1hE
2`

x J

n
dxDC

2mDqqF2E
2`

x nx

n S J

nD
x

dx1S J

nD
x
GC. ~65!

In order to find other nontrivial solutions we just multipl
Eq. ~63! by u8 and integrate againstx, then we obtain

F~u,u8!5kPR, ~66!
0-10
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with

F~u,u8!5~u8!22
4m~2Dpq1hDqq!

\214m2Dqq
2

ln~u!u2

1
2m~\v12Dpq1hDqq!

\214m2Dqq
2

u2. ~67!

Equations~66! and~67! are easily shown to have a sadd
point at (u0,0), whereu0 is given by formula~64!. Indeed,
its phase portrait~for typical values of the diffusion con
stants! is as shown in Fig. 1~a! and 1~b!. A detailed scrutiny
of the phase portrait shows that the only ‘‘mathematica
meaningful’’ solutions to Eq.~66! and~67! @thus to Eq.~63!#
are those at the left of the saddle point@depicted in Fig. 2~d!#
when extension by zero ofu ln(u) is assumed by continuity
in the sense that they do belong to allLp(R) with 1<p
<`. This opens the way to the analysis of asymptotic
havior and orbital stability in future work. On the other han
solutions corresponding to the branches above and below
saddle point are all unbounded. Also, the only solutio
originally defined on the whole line~before extension by
zero! are those corresponding to the branches allocated a
right of the saddle point, but all of them are not bound
neither decaying. A typical example of the last class of so
tions is easily computed by assumingk50 in Eq. ~66!. In
doing so we get

u5expH 1

2 S 11
\v

2Dpq1hDqq
D1

m~2Dpq1hDqq!

\214m2Dqq
2

x2J
and the associated stationary state

C5expH 1

2 S 11
\v

2Dpq1hDqq
D1

m~2Dpq1hDqq!

\214m2Dqq
2

x2

1 i
m

\
DqqS 11

\v

2Dpq1hDqq
1

2m~2Dpq1hDqq!

\214m2Dqq
2

x2D
2 ivtJ

which solves Eq.~65!.
Another way of finding stationary solutions consists

assumingJ[0. Under this assumption, Eq.~46! becomes

i\C t52
\2

2m
Cxx1

i\

2
DqqS nxx

n DC

1@V1mUc12Dpqln~n!#C. ~68!

As in the previous case, takingu(x,t)5An(x,t) yields

ut5DqqS ux
2

u
1uxxD . ~69!

Now, considering the wave function profile
02611
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C~x,t !5u~x,t !eiS(t) ~70!

and inserting it into Eq.~68! one easily gets

Eu52
\2

2m
uxx1@V1mUc14Dpqln~u!#u, ~71!

where we have used Eq.~69! and denoted

FIG. 1. Top to bottom:~a! Phase portrait of Eq.~63! for typical
values of the diffusion coefficients of Dekker’s phenomenology
the high-temperature regimeT52 andV51, in units such that the
Boltzmann constant is unity. The damping constantl50.2. ~b!
Same as~a!, except T51, V50.5. The damping constantl
50.05 andv50.001. ~c! The counterpart of Eq.~63! @with the
physical constants set in~a!# with logarithmic nonlinearity of
Byalinicki-Virula-Mycielski type, i.e., with a minus sign in front o
the logarithmic term.
0-11
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E~ t !52\
dS

dt
. ~72!

As consequence, the ansatz~70! is a solution of Eq.~46! iff
u(x,t) solves Eqs.~69! and~71! with E(t) given by Eq.~72!.
Finally, from Eq.~71! it is a simple matter to show that th
stationary states given by Eq.~70! satisfy the following non-
linear stationary Schro¨dinger equation

EC52
\2

2m
Cxx1@V1mUc12Dpqln~n!#C.

By making the particular choice

V5Uc50, Dqq50, ~73!

one can easily recognize from Eq.~68! @or Eq. ~60!# the
well-known logarithmic Schro¨dinger equation. This equatio
has been widely analyzed by several authors, e.g., Caze
@45,46# ~in the case that the logarithmic term is preceded
a minus sign! and Cid and Dolbeault@47#. In particular, some
dispersion estimates and stability properties have been in
tigated. Indeed, if Eq.~73! is assumed and in addition th
following regularities

C0PH1~R!, uxuC0PL2~R!,

uxu2n,nln~n!PC0@R1;L1~R!#

are satisfied, then the dispersion property

E
I
n~x,t !dx<OS 1

ln~ t ! D
was shown in Ref.@47# to hold for evolutionary solutions a
t→1`, for all I bounded open set inR. Here,C05C(x,t
50) denotes the corresponding initial data. However, if
assume Eq.~73! in our current setting~vanishing current! we

FIG. 2. The four types of solutionsu(x) to Eq. ~63! @with the
physical constants set in Fig. 1~a!#. Top to bottom:~a! Initial data
„u(0),u8(0)…5(1,20.5), ~b! Initial data (2,0.5),~c! Initial data
(2,0), and~d! Initial data (0.5,0.1).
02611
ve
y

s-

e

are actually led to stationary solutions of the type discus
above (nt50, see Fig. 2! as sheds from Eq.~69!. This means
that the Dolbeault-Cid dispersion result stated before d
not apply in our situation, when Eq.~68! is reduced to the
logarithmic Schro¨dinger equation.

On the other hand, well-posedness and stability res
were also shown in Refs.@45,46# for the logarithmic Schro¨-
dinger equation, where the logarithmic nonlinearity was co
sidered with opposite sign to that explored in this pap
Nevertheless, this fact drastically changes the dynamic
the system@see Fig. 1~c!#. For instance, in this situation
Gaussons are admitted as amplitude profiles for station
solutions@26#. In fact, the radial Gausson was shown in@45#
to be orbitally stable under radial perturbations. The sin
sign choice for the logarithmic term first made in@26# and
later continued in@45,46# was owing to the fact that the othe
sign led to an energy functional which was not bounded fr
below. However, the positive sign for the logarithmic nonli
earity was physically justified in Ref.@48# as representing a
diffusion force within the context of stochastic quantum m
chanics. Indeed, by considering slowly varying profiles
the absence of external forces@as those shown in Fig. 2~d!#
we guess that the kinetic contribution*R(ux)

2dx is negli-
gible, so that the effective energy operator~45! may be now
rewritten as

E@u#52DpqE
R
u2ln~u2!dx. ~74!

This expression is not bounded from below. Howev
whether the density profileu(x) has support over a domainI
with finite measure in configuration space, then it is a sim
matter to check that the energy functional~74! satisfies

E@u#>2
2Dpq

e
uI u,

uI u denoting the Lebesgue measure ofI. If in addition the
normalization constraint*Rn(x)dx51 is assumed to hold
then minimization of the functional

Em@u#5E
I
Fu2ln~u2!1mS u22

1

uI u D Gdx

leads to the minimizeru[uI u21/2, where we used the
Lagrange multiplierm. Therefore, the following stronge
bound on~74!

E@u#>22Dpqln~ uI u!

is deduced. A similar argument was carried out by Davids
in the latest reference of those cited in Ref.@48# to conclude
that the usual assumption about the sign of the logarith
term made in Ref.@26# is not the only reasonable possibilit
and that a sensible theory can be developed with the oppo
sign as well.
0-12
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B. Stationary solutions to Eq.„58…

We now study the existence of the following type of s
tionary profiles

C~x,t !5eR(x,t)1 iS(x,t) ~75!

as wave function solutions to Eq.~58!. By inserting the an-
satz~75! into Eq. ~58! and splitting into real and imaginar
parts we are led to the following system of nonlinear coup
equations

Rt52
\2

2m
Sxx2

\

m
RxSx1DqqRxx12DqqRx

2 , ~76!

St52
1

\
V2

2

\
~2Dpq1hDqq!R2DqqSxx1

4m

\
Dqq

2 Rxx

1
4m

\
Dqq

2 Rx
22

\

2m
Sx

2 . ~77!

Again we are looking for stationary states satisfyingnt
50, or equivalentlyRt50. Under this assumption, Eq.~76!
is reduced to

S DqqR2
\2

2m
SD

xx

12RxS DqqR2
\

2m
SD

x

50. ~78!

We first assumeR(x)[bPR, thus Eq.~78! yields

S~x,t !5kx1h~ t !, kPR,

h(t) being an arbitrary function of time. Denotingc05eb

and choosingh(t)52vt with vPR, we find the following
plane wave solutions

C~x,t !5c0ei (kx2vt), c0PR,

to the field-free (V[0) Eq. ~58!, which constitute a particu
lar case of the profiles~75!. Finally, the following expression
for the k-dependence ofv

v~k!5
\

2m
k21

2b

\
~2Dpq1hDqq!

is deduced from Eq.~77!.
We now investigate the existence of other nontrivial s

tionary solutions to Eq.~58!. For that, we first consider th
following ansatz for the phase of the wave function

S~x,t !5
2m

\
~DqqR~x!2vt !. ~79!

It is a simple matter to check that the functions in Eq.~79!
solve Eq.~78!. Moreover, from Eq.~77! we find the follow-
ing phase equation

v52Dqq
2 @R91~R8!2#1

1

2m
V1

1

m
~2Dpq1hDqq!R.

~80!
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Now, if R(x) is a solution of Eq.~80! then the amplitude
function

u~x!5eR(x)

satisfies

2mvu522mDqq
2 u91@V12~2Dpq1hDqq!ln~u!#u.

~81!

Hence, from the solutionsu(x) of Eq. ~81! we get the fol-
lowing stationary solutions of Eq.~58!

C~x,t !5u~x!expH i
2m

\
@Dqqln„u~x!…2vt#J .

In the particular caseDqq50 we find that

C~x,t !5c0expH R~x!2 i
2m

\
vtJ , c0PR,

solves Eq.~58!, whereR(x) andv are connected through

v5
1

2m
V1

2

m
DpqR

as sheds from Eq.~80!. Besides, ifV[0 then the simplest
~constant! solution of Eq.~81! is

u[expH mv

2Dpq1hDqq
J ,

therefore we may claim that

C~x,t !5expH mv

2Dpq1hDqq
F11

2i

\
H~ t !G J

is a particular stationary solution of Eq.~58!, with

H~ t !5mDqq2~2Dpq1hDqq!t.

We also notice that Eq.~81! is structurally equivalent to Eq
~63!, hence the behavior of its solutions is just as explain
in the preceding section@cf. Figs. 1~a!, 1~b!, and 2#.

We finally investigate the stationary solutions stemmi
from the vanishing of the current flux (J[0). In this case it
is straightforward to verify that the position density satisfi
the following heat equation

nt5Dqqnxx

whose solution is given by

n~x,t !5
1

A4pt
E

R
n0~y!e2[(x2ADqqy)2/4Dqqt]dy

for given initial data n0(x)5n(x,t50). Equivalently, u
5An satisfies

ut5DqqS ux
2

u
1uxxD . ~82!
0-13
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On the other hand, Eq.~58! is now reduced to

i\C t52
\2

2m
Cxx1

i\

2
DqqS nxx

n DC1@V1~2Dpq1hDqq!

3 ln~n!#C1S \2

4m
22mDqq

2 D S nxx

n
2

nx
2

2n2D C. ~83!

Consider the following ansatz

C~x,t !5u~x,t !eiV(t). ~84!

Inserting this profile into Eq.~83! and using Eq.~82! yields

Eu524mDqq
2 uxx1@V12~2Dpq1hDqq!ln~u!#u,

~85!

whereE(t) is given by Eq.~72!. Hence, the wave function
~84! is a solution of Eq.~58! provided thatE(t) andu(x,t)
satisfy Eq.~85!, which again fits the dynamics of the loga
rithmic Schrödinger equation discussed in the previous s
tion.

From Eqs.~79! and ~80! it is also possible to deduce th
existence of solitary waves for the force-free case. Indeed
us define

R̃~x,t !5R~x2vt,t !,

S̃~x,t !5S~x2vt,t !1
m

\
vx2

m

2\
v2t.

It is a simple matter to check that the pair (R̃,S̃) solves Eqs.
~76! and ~77!. Hence, the wave function profile~75! is now
written as

C~x,t !5c0expH R~x2vt !1
im

\ F2DqqR~x2vt !22vt1vx

2
v2

2
t G J , c0PR,

whereR is a solution of Eq.~80!. Accordingly, the position
density reads

n~x,t !5c0
2e2R(x2vt)

yielding solitary waves which propagate with constant vel
ity v without changing their shape.

V. SUMMARY AND CONCLUSIONS

In this paper we have derived two nonlinear Schro¨dinger-
type models for an electron gas interacting dissipatively w
a reservoir, which correspond to a hydrodynamic and a
chastic approach, respectively. We start from the o
dimensional Wigner-Fokker-Planck system, which is an
tension of the well-known Caldeira-Leggett master equat
including quantum diffusion in the position direction. Th
equation preserves mass, but neither moment nor energ
conserved along the evolution.
02611
-

let

-

h
o-
-
-
n

are

In the hydrodynamic approach we show that, under pl
sible physical assumptions on the~mixed-state! classical
pressure and the amplitude of the waves, which allow
moments closure, the quantum-mechanical nonlinear dyn
ics of the dissipative process is reduced to a nonlinear c
plex Schro¨dinger equation including a friction term o
Kostin-type@27#, a Drude type correction~represented by a
logarithmic nonlinearity with opposite sign to that derived
Ref. @26#! and aO(\3) complex, diffusive correction which
allocates the problem in a generalized Ginzburg-Landau
ting. A nonlinear equation of the same type includingO(\4)
diffusive corrections is obtained through the Nelsonian s
chastic approach, although in this case the pressure tens
fully identified via some simple algebra involving the fo
ward and backward mean velocities associated with the
cess. We thus conclude that physical situations describe
the quantum Fokker-Planck equation~1! and~2!, e.g., coher-
ences and tunneling phenomena, in which statistical fluc
tions may occur allowing for dissipative effects, can be mo
eled by Eqs.~42! or ~57! @equivalently, by Eqs.~46! or ~58!#.
Finally, an exhaustive description of how stationarity occu
for both models has been carried out. The most remarka
point in this context is the existence of solitoniclike dens
profiles, which also have mathematical interest because
their regularity properties in Sobolev spaces.

The analysis of some distinctive features of these eq
tions deserves of further research, such as the existenc
other particular solutions~for instance, the study of Gaussia
shape, soliton or self-similar solutions!, the dispersive behav
ior of solutions in the long time as well as the stability pro
erties of theLp stationary solutions, the analysis of the lar
friction regime leading to the quantum Smoluchowski equ
tion in the Wigner picture or the rigorous inviscid lim
which allows to recover the frictional, nondissipative Schr¨-
dinger equation, among others. Also, a comparative qua
tive and numerical analysis for both hydrodynamic and s
chastic dissipative Schro¨dinger models is an interestin
subject of future work.
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APPENDIX: SOME REMARKS ON THE
MULTIDIMENSIONAL DERIVATIONS

The 3D version of the stochastic approach carried ou
Sec. III is straightforward by following the 1D computation
outlined above in the multidimensional case. It is significa
the fact that the 3D analog of Eq.~53! implies

(
i 51

3
]Pik

]xi
5Dqq(

i 51

3
]

]xi
FnS ]v i

]xk
1

]vk

]xi
D G22lnvk ,
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hence the 3D version of Eq.~54! is written in terms of the
following rank two tensor

Pik5DqqnS ]v i

]xk
1

]vk

]xi
D2

2

3
lE

2`

xi
j kdxi . ~A1!

This identity incorporates a friction term to the classical e
pression of the rate of strain tensor in viscous fluid dynam

On the other hand, things are not so simple for the
calculations leading to the hydrodynamic Schro¨dinger ap-
proach. Actually, the right-hand side of the (kth component
of the! following Hamilton-Jacobi-Madelung-type equatio
@cf. Eq. ~39!# ruling the evolution of“xS

]

]t S ]S

]xk
D1

\

ma (
i 51

3
]S

]xi

]2S

]xi]xk

52
a

\

]V

]xk
2

ma

\ (
i 51

3 ]Uik
c

]xi
2

2a

\
Dpq

1

n

]n

]xk

22l
]S

]xk
1

Dqq

n (
i 51

3 F2
]n

]xi

]2S

]xi]xk
1n

]3S

]xi
2]xk

2
\

2 S 1

n

]2n

]xi
2

]n

]xk
1

1

n

]n

]xi

]2n

]xi]xk

2
1

n2 S ]n

]xi
D 2 ]n

]xk
2

]3n

]xi
2]xk

D G ~A2!

is no longer irrotational, hence Eq.~A2! is not consistent
from a mathematical point of view. Indeed, a sufficient co
dition for consistency is that (“xuo“x^v&) be a symmetric
matrix.
v.

.

t.

ys
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Finally, in the hydrodynamic approach the classical co
ponent of the tensor pressure

Pik5E
R
j ijkWdj2nv ivk

is given by

Pik
c 5Pik

c ~n!5
\2

a2
n~^v ivk&2^v i&^vk&!.

We now define

Uik
c ~n!ªE

0

n 1

n8

]Pik
c

]n8
dn8.

In the lowest-order isotropic approximation, the local hydr
static pressure of the electron gas is known to be prop
tional to n5/3I , whereI denotes the identity matrix. This ex
pression actually satisfies the condition of adiaba
transformation for an ideal gas. We have

Pik
c 'n5/3d ik ,

thus

(
i 51

3 ]Uik
c

]xi
5

1

n (
i 51

3 ]Pik
c

]xi
'n21/3

]n

]xk
.

As consequence, as in the 1D case we find

Uc
ªE

2`

xk S (
i 51

3 ]Uik
c

]xi
D dxk'E

2`

xk
n21/3

]n

]xk
dxk5uCu4/3

independently ofk51,2,3.
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@2# JoséA. Cañizo, Jose´ L. López, and J. Nieto, J. Diff. Equ.~to be
published!.

@3# F. Castella, L. Erdo¨s, F. Frommlet, and P.A. Markowich, J
Stat. Phys.100, 543 ~2000!.
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